×

Zero utility principles coinciding on binary risks. (English) Zbl 1530.39014

Summary: It is known that the zero utility principle under Cumulative Prospect Theory can be uniquely extended from the family of all ternary risks. On the other hand, the extension from the family of all binary risks need not be unique. We establish a characterization of those zero utility principles which coincide on the family of binary risks. The characterization is expressed in terms of relations between the systems of generators of the principles.

MSC:

39B12 Iteration theory, iterative and composite equations
39B82 Stability, separation, extension, and related topics for functional equations
91B16 Utility theory
91B05 Risk models (general)

References:

[1] Bowers, NL; Gerber, HU; Hickman, JC; Jones, DA; Nesbitt, CJ, Actuarial Mathematics (1986), Itasca: The Society of Actuaries, Itasca · Zbl 0634.62107
[2] Bühlmann, H., Mathematical Models in Risk Theory (1970), New York: Springer, New York · Zbl 0209.23302
[3] Chudziak, J., On existence and uniqueness of principle of the equivalent utility under cumulative prospect theory, Insur. Math. Econom., 79, 243-246 (2018) · Zbl 1401.91118 · doi:10.1016/j.insmatheco.2018.02.001
[4] Chudziak, J., On applications of inequalities for quasideviation means in actuarial mathematics, Math. Inequal. Appl., 21, 3, 601-610 (2018) · Zbl 1397.39018
[5] Chudziak, J., On functional equations stemming from actuarial mathematics, Aequ. Math., 92, 471-486 (2018) · Zbl 1393.39013 · doi:10.1007/s00010-017-0519-2
[6] Chudziak, J., Extension problem for principles of equivalent utility, Aequ. Math., 93, 217-238 (2019) · Zbl 1411.91274 · doi:10.1007/s00010-019-00638-9
[7] Chudziak, J., On positive homogeneity and comonotonic additivity of the principle of equivalent utility under cumulative prospect theory, Insur. Math. Econom., 94, 154-159 (2020) · Zbl 1454.91175 · doi:10.1016/j.insmatheco.2020.07.008
[8] Chudziak, M.; Żołdak, M., On extendability of the principle of equivalent utility, Symmetry, 12, 42 (2020) · doi:10.3390/sym12010042
[9] Heilpern, S., A rank-dependent generalization of zero utility principle, Insur. Math. Econom., 33, 67-73 (2003) · Zbl 1058.91024 · doi:10.1016/S0167-6687(03)00144-6
[10] Kaas, R.; Goovaerts, M.; Dhaene, J.; Denuit, M., Modern Actuarial Risk Theory (2008), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1148.91027 · doi:10.1007/978-3-540-70998-5
[11] Kałuszka, M.; Krzeszowiec, M., Pricing insurance contracts under cumulative prospect theory, Insur. Math. Econom., 50, 159-166 (2012) · Zbl 1239.91080 · doi:10.1016/j.insmatheco.2011.11.001
[12] Kałuszka, M.; Krzeszowiec, M., On iterative premium calculation principles under cumulative prospect theory, Insur. Math. Econom., 52, 435-440 (2013) · Zbl 1284.91244 · doi:10.1016/j.insmatheco.2013.02.009
[13] Kuczma, M., An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality (2009), Berlin: Birkhäuser, Berlin · Zbl 1221.39041 · doi:10.1007/978-3-7643-8749-5
[14] Rolski, T.; Schmidli, H.; Schmidt, V.; Teugels, J., Stochastic Processes for Insurance and Finance (1999), New York: Wiley, New York · Zbl 0940.60005 · doi:10.1002/9780470317044
[15] Sobek, B., Pexider equation on a restricted domain, Demonstr. Math., 43, 81-88 (2010) · Zbl 1236.39023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.