×

On representations of yield functions for crystals, quasicrystals and transversely isotropic solids. (English) Zbl 0930.74012

Summary: The material symmetry of a solid imposes invariance restrictions on the form of the yield function of this solid, the latter being a scalar-valued function of the stress tensor according to the usual stress formulation. The main objective of this article is to derive from such material symmetry restrictions the general reduced forms of yield functions for infinitely many classes of crystals and quasicrystals with the material symmetry groups \(D_{2m+2h}\), \(C_{2m+2h}\), \(D_{2m+1d}\) and \(S_{4m+2}\) for all integers \(m \geq 1\), as well as for the transversely isotropic solids and for the cubic crystals. For the infinitely many classes of crystals and quasicrystals just mentioned, the results are provided in unified forms valid for all integers \(m \geq 1\). It is shown that eight polynomial invariants are enough to determine the general reduced form of the yield function for each aforementioned crystal class and quasicrystal class, except the cubic crystal class \(T_h\) and the transverse isotropy. For pressure-independent yielding and plane stress yielding, the numbers of invariants required are reduced to seven and three, respectively. Further, each presented result is shown to be irreducible in the sense that it contains no redundant invariants as arguments entering the general reduced form of yield functions. It seems that the results for quasicrystals have been presented here for the first time. For crystal classes, the presented results are either more compact than results for \(S_6\), \(C_{4h}\), \(D_{4h}\), \(C_{6h}\) and \(T_h\), or as compact as results for \(D_{3d}\), \(D_{6h}\) and \(O_h\).

MSC:

74E15 Crystalline structure
74E10 Anisotropy in solid mechanics
74C99 Plastic materials, materials of stress-rate and internal-variable type
82D25 Statistical mechanics of crystals
15A90 Applications of matrix theory to physics (MSC2000)
Full Text: DOI

References:

[1] Adkins, J. E., Symmetry relations for orthotropic and transversely isotropic materials, Arch. Rat. Mech. Anal., 4, 193-213 (1960) · Zbl 0092.41001
[2] Barlat, F.; Lege, D. J.; Brem, J., A six-component yield function for anisotropic materials, Int. J. Plasticity, 7, 693-712 (1991)
[3] Betten, J., Zur Modifikation des Spannungsdeviators, Acta Mech., 27, 173-184 (1977) · Zbl 0365.73031
[4] Betten, J., Elastizitäts- und Plastizitätslehre (1985), Vieweg-Verlag: Vieweg-Verlag Braunschweig/Wieshaden · Zbl 0551.73009
[5] Betten, J., Applications of tensor functions to the formulation of yield criteria for anisotropic materials, Int. J. Plasticity, 4, 29-46 (1988) · Zbl 0629.73021
[6] Betten, J., Recent advances in applications of tensor functions in solid mechanics, Adv. Mech., 14, 1, 79-109 (1991)
[7] Betten, J., Kontinuumsmechanik, (Elasto-, Plasto- und Kriechmechanik (1993), Springer-Verlag: Springer-Verlag Berlin), 223-240 · Zbl 0787.73002
[8] Bischoff-Beiermann, B.; Bruhns, O. T., A physically motivated set of invariants and generators in the case of transverse isotropy, Int. J. Eng. Sci., 32, 1531-1552 (1994) · Zbl 0899.73039
[9] Boehler, J. P., On irreducible representations for isotropic scalar functions, Z. Angew. Math. Mech., 57, 323-327 (1977) · Zbl 0362.15019
[10] Boehler, J. P., Lois de comportement anisotrope des milieux continus, J. Mech., 17, 153-190 (1978) · Zbl 0401.73005
[11] Boehler, J. P., A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy, Z. Angew. Math. Mech., 59, 157-167 (1979) · Zbl 0416.73002
[12] (Boehler, J. P., Applications of tensor functions in solid mechanics. Applications of tensor functions in solid mechanics, CISM Courses and Lectures No. 292 (1987), Springer-Verlag: Springer-Verlag Vienna) · Zbl 0657.73001
[13] Boehler, J. P.; Raclin, J., Representations irréductibles des functions tensorielles anisotropes non-polynominales de deux tenseurs symétriques, Arch. Mech., 29, 263-274 (1977) · Zbl 0364.73005
[14] Boehler, J. P.; Sawczuk, A., Applications of representation theorems to describing yielding of transversely isotropic materials, Mech. Res. Commun., 3, 277-283 (1976) · Zbl 0367.73044
[15] Boehler, J. P.; Sawczuk, A., On yelding of oriented solids, Acta Mechanica, 27, 185-206 (1977)
[16] Green, A. E.; Adkins, J. E., Large Elastic Deformations, ((1960), Oxford Univ. Press: Oxford Univ. Press Oxford), 1-33 · Zbl 0090.17501
[17] Hill, R., A theory of the yielding and plastic flow of anisotropic metals, (Proc. R. Soc. Lond. A, 193 (1948)), 281-297 · Zbl 0032.08805
[18] Hosford, W. F., A generalized isotropic yield criterion, J. Appl. Mech., 39, 607-609 (1972)
[19] Lehmann, T., Zu einigen nicht-linearen Stoffgesetzen für plastische Formänderungen, Rheol. Acta, 11, 4-12 (1972) · Zbl 0232.73031
[20] Litewka, A.; Sawczuk, A., Yield criterion for perforated sheets, Ing. Archiv., 50, 393-400 (1981) · Zbl 0469.73018
[21] Liu, I. S., On representations of anisotropic invariants, Int. J. Eng. Sci., 20, 1099-1109 (1982) · Zbl 0504.73001
[22] Mazilu, P.; Meyers, A., Yield surface description of isotropic materials after cold prestrain, Ing. Archiv., 55, 213-220 (1985) · Zbl 0559.73039
[23] Mises, R.von, Mechanik der plastischen Formänderung von Kristallen, Z. Angew. Math. Mech., 8, 161-185 (1928) · JFM 54.0877.01
[24] Pennisi, S.; Trovato, M., On irreducibility of Professor G.F. Smith’s representations for isotropic functions, Int. J. Eng. Sci., 25, 1059-1065 (1987) · Zbl 0614.73002
[25] Pipkin, A. C.; Wineman, A. S., Material symmetry restrictions on non-polynomial constitutive equations, Arch. Rat. Mech. Anal., 12, 420-426 (1963) · Zbl 0112.16802
[26] Rivlin, R. S., Further remarks on the stress-deformation relations for isotropic materials, J. Rat. Mech. Anal., 4, 681-701 (1955) · Zbl 0064.42101
[27] Smith, G. F., On the yield condition for anisotropic materials, Q. Appl. Math., 20, 241-247 (1962) · Zbl 0127.39903
[28] Smith, G. F., Further results on the strain-energy function for anisotropic elastic materials, Arch. Rat. Mech. Anal., 10, 108-118 (1962) · Zbl 0100.37101
[29] Smith, G. F., On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors, Int. J. Eng. Sci., 9, 899-916 (1971) · Zbl 0233.15021
[30] Smith, G. F.; Rivlin, R. S., The strain-energy function for anisotropic elastic materials, Trans. Am. Math. Soc., 88, 175-193 (1958) · Zbl 0089.23505
[31] Spencer, A. J.M., Theory of invariants, (Eringen, A. C., Continuum Physics, vol. I (1971), Academic Press: Academic Press New York), 240-353
[32] Suh, Y. S.; Saunders, F. I.; Wagoner, R. H., Anisotropic yield functions with plastic-strain-induced anisotropy, Int. J. Plasticity, 12, 417-438 (1996) · Zbl 0891.73019
[33] Truesdell, C.; Noll, W., The nonlinear field theories of mechanics, (Flügge, S., Handbuch der Physik, vol. III/3 (1965), Springer-Verlag: Springer-Verlag Berlin), 410-412 · Zbl 0779.73004
[34] Vainshtein, B. I., Modern crystallography 1: Fundamentals of crystals (1994), Springer-Verlag: Springer-Verlag Berlin, Sections 2 and 5
[35] Wang, C. C., A new representation theorem for isotropic functions. Part I: scalar-valued isotropic functions, Arch. Rat. Mech. Anal., 43, 392-395 (1970), corrigendum
[36] Wineman, A. S.; Pipkin, A. C., Material symmetry restrictions on constitutive equations, Arch. Rat. Mech. Anal., 17, 184-214 (1964) · Zbl 0126.40604
[37] Xiao, H., On anisotropic scalar functions of a single symmetric tensor, (Proc. R. Soc. Lond. A, 452 (1996)), 1545-1561 · Zbl 0869.73011
[38] Xiao, H., On isotropic extension of anisotropic tensor functions, Z. Angew. Math. Mech., 76, 205-215 (1996) · Zbl 0879.15033
[39] Xiao, H., A unified theory of representations for scalar-, vector- and second-order tensor-valued anisotropic functions of vectors and second-order tensors, Arch. Mech., 49, 995-1039 (1997) · Zbl 0958.15027
[40] Xiao, H., On anisotropic invariants of a single symmetric tensor: crystal classes, quasicrystal classes and others, (Proc. R. Soc. Lond. A, 454 (1997)), 1217-1240 · Zbl 0924.15027
[41] (Zwillinger, D., Standard Mathematical Tables and Formulae (1996), CRC Press: CRC Press New York, London), 489-490 · Zbl 0898.00005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.