×

An elementary rigorous proof of bulk-boundary correspondence in the generalized Su-Schrieffer-Heeger model. (English) Zbl 1448.81443

Summary: We generalize the Su-Schrieffer-Heeger (SSH) model with the inclusion of arbitrary long-range hopping amplitudes, providing a simple framework to investigate arbitrary adiabatic deformations that preserve the chiral symmetry upon the bulk energy bands with any arbitrary winding numbers. Using only elementary techniques of solving linear difference equations and applying Cauchy’s integral formula, we obtain a mathematically rigorous and physically transparent proof of the bulk-boundary correspondence for the generalized SSH model. The multiplicity of robust zero-energy edge modes is shown to be identical to the winding number. On the other hand, nonzero-energy edge modes, if any, are shown to be unstable under adiabatic deformations and not related to the topological invariant. Furthermore, under deformations of small spatial disorder, the zero-energy edge modes remain robust.

MSC:

81T45 Topological field theories in quantum mechanics
82D03 Statistical mechanics in condensed matter (general)

References:

[1] Hasan, M. Z.; Kane, C. L., Topological insulators, Rev. Mod. Phys., 82, 3045 (2010)
[2] Qi, X. L.; Zhang, S. C., Topological insulators and superconductors, Rev. Mod. Phys., 83, 1057 (2011)
[3] Laughlin, R. B., Quantized Hall conductivity in two-dimensions, Phys. Rev. B, 23, 5632 (1981)
[4] Hatsugai, Y., Chern number and edge states in the integer quantum Hall effect, Phys. Rev. Lett., 71, 22, 3697 (1993) · Zbl 0972.81712
[5] Hatsugai, Y., Bulk-edge correspondence in graphene with/without magnetic field: chiral symmetry, Dirac fermions and edge states, Solid State Commun., 149, 1061 (2009)
[6] Essin, A. M.; Gurarie, V., Bulk-boundary correspondence of topological insulators from their Green’s functions, Phys. Rev. B, 84, 12, Article 125132 pp. (2011)
[7] Graf, G. M.; Porta, M., Bulk-edge correspondence for two-dimensional topological insulators, Commun. Math. Phys., 324, 3, 851 (2013) · Zbl 1291.82120
[8] Rudner, M. S.; Lindner, N. H.; Berg, E.; Levin, M., Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems, Phys. Rev. X, 3, 3, Article 031005 pp. (2013)
[9] Cano, J.; Cheng, M.; Mulligan, M.; Nayak, C.; Plamadeala, E.; Yard, J., Bulk-edge correspondence in (2+1)-dimensional Abelian topological phases, Phys. Rev. B, 89, 11, Article 115116 pp. (2014)
[10] Prodan, E.; Schulz-Baldes, H., Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics (2016), Springer: Springer Switzerland · Zbl 1342.82002
[11] Su, W. P.; Schrieffer, J. R.; Heeger, A. J., Solitons in polyacetylene, Phys. Rev. Lett., 42, 1698 (1979)
[12] Heeger, A. J.; Kivelson, S.; Schrieffer, J. R.; Su, W.-P., Solitons in conducting polymers, Rev. Mod. Phys., 60, 781 (1988)
[13] Jackiw, R.; Rebbi, C., Solitons with fermion number 1/2, Phys. Rev. D, 13, 3398 (1976)
[14] Ryu, S.; Schnyder, A. P.; Furusaki, A.; Ludwig, A. W.W., Topological insulators and superconductors: tenfold way and dimensional hierarchy, New J. Phys., 12, Article 065010 pp. (2010)
[15] Asbóth, J. K.; Oroszlány, L.; Pályi, A., A Short Course on Topological Insulators: Band-Structure Topology and Edge States in One and Two Dimensions (2016), Springer: Springer Switzerland · Zbl 1331.82002
[16] Pershoguba, S. S.; Yakovenko, V. M., Shockley model description of surface states in topological insulators, Phys. Rev. B, 86, Article 075304 pp. (2012)
[17] Rhim, J. W.; Behrends, J.; Bardarson, J. H., Bulk-boundary correspondence from the intercellular Zak phase, Phys. Rev. B, 95, Article 035421 pp. (2017)
[18] Rudin, W., Principles of Mathematical Analysis (1976), McGraw-Hill: McGraw-Hill New York · Zbl 0148.02903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.