×

Numerical solution for an aggregation equation with degenerate diffusion. (English) Zbl 1474.65343

Summary: A numerical method for approximating weak solutions of an aggregation equation with degenerate diffusion is introduced. The numerical method consists of a finite element method together with a mass lumping technique and an extra stabilizing term plus a semi-implicit Euler time integration. Then we carry out a rigorous passage to the limit as the spatial and temporal discretization parameters tend to zero, and show that the sequence of finite element approximations converges toward the unique weak solution of the model at hands. In doing so, nonnegativity is attained due to the stabilizing term and the acuteness on partitions of the computational domain, and hence a priori energy estimates of finite element approximations are established. As we deal with a nonlinear problem, some form of strong convergence is required. The key compactness result is obtained via an adaptation of a Riesz-Fréchet-Kolmogorov criterion by perturbation. A numerical example is also presented.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K55 Nonlinear parabolic equations
45K05 Integro-partial differential equations
35K20 Initial-boundary value problems for second-order parabolic equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35D30 Weak solutions to PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Software:

FreeFem++

References:

[1] Alt, H. W.; Luckhaus, S., Quasilinear elliptic-parabolic differential equations, Math. Z., 183, 3, 311-341 (1983) · Zbl 0497.35049
[2] Azérad, P.; Guillén-González, F., Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics, SIAM J. Math. Anal., 33, 4, 847-859 (2001) · Zbl 0999.35072
[3] Bertozzi, A. L.; Slepčev, D., Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion, Commun. Pure Appl. Anal., 9, 6, 1617-1637 (2010) · Zbl 1213.35266
[4] Boi, S.; Capasso, V.; Morale, D., Modeling the aggregative behavior of ants of the species polyergus rufescens. spatial heterogeneity in ecological models (alcalá de henares, 1998), Nonlinear Anal. Real World Appl., 1, 1, 163-176 (2000) · Zbl 1011.92053
[5] Brenner, S. C.; Scott, L. R., The mathematical theory of finite element methods, Texts in Applied Mathematics, 15 (2008), Springer: Springer New York · Zbl 1135.65042
[6] Carrillo, J. A.; Chertock, A.; Huang, Y., A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun. Comput. Phys., 17, 1, 233-258 (2015) · Zbl 1388.65077
[7] Ern, A.; Guermond, J. L., Theory and practice of finite elements, Applied Mathematical Sciences, 159 (2004), Springer-Verlag: Springer-Verlag New York · Zbl 1059.65103
[8] Girault, V.; Lions, J. L., Two-grid finite-element schemes for the transient navier-stokes problem, M2AN Math. Model. Numer. Anal., 35, 5, 945-980 (2001) · Zbl 1032.76032
[9] Guillén-González, F.; Gutiérrez-Santacreu, J. V., Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model, M2AN Math. Model. Numer. Anal., 43, 3, 563-589 (2009) · Zbl 1171.80006
[10] Guillén-González, F.; Gutiérrez-Santacreu, J. V., Unconditional stability and convergence of fully discrete schemes for 2D viscous fluids models with mass diffusion, Math. Comput., 77, 263, 1495-1524 (2008) · Zbl 1193.35153
[11] Gurtin, M. E.; MacCamy, R. C., On the diffusion of biological populations, Math. Biosci., 33, 1-2, 35-49 (1977) · Zbl 0362.92007
[12] Grisvard, P., Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, 24 (1985), Pitman (Advanced Publishing Program): Pitman (Advanced Publishing Program) Boston, MA · Zbl 0695.35060
[13] Hecht, F., New development in freefem++, J. Numer. Math., 20, 3-4, 251-265 (2012) · Zbl 1266.68090
[14] Hillen, T.; Painter, K. J., A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58, 1-2, 183-217 (2009) · Zbl 1161.92003
[15] Horstmann, D., From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. i, Jahresber. Deutsch. Math.-Verein., 105, 3, 103-165 (2003) · Zbl 1071.35001
[16] Horstmann, D., From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II, Jahresber. Deutsch. Math.-Verein., 106, 2, 51-69 (2004) · Zbl 1072.35007
[17] Keller, E. F.; Segel, L. A., Model for chemotaxis, J. Theor. Biol., 30, 225-234 (1971) · Zbl 1170.92307
[18] Milewski, P. A.; Yang, X., A simple model for biological aggregation with asymmetric sensing, Commun. Math. Sci., 6, 2, 397-416 (2008) · Zbl 1140.92018
[19] Mogilner, A.; Edelstein-Keshet, L., A non-local model for a swarm, J. Math. Biol., 38, 6, 534-570 (1999) · Zbl 0940.92032
[20] Mogilner, A. I.; Edelstein-Keshet, L.; Bent, L.; Spiros, A., Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol., 47, 4, 353-389 (2003) · Zbl 1054.92053
[21] Patlak, C. S., Random walk with persistence and external bias, Bull. Math. Biophys., 15, 311-338 (1953) · Zbl 1296.82044
[22] Topaz, C. M.; Bertozzi, A. L.; Lewis, M. A., Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65, 1, 152-174 (2004) · Zbl 1071.92048
[23] Topaz, C. M.; Bertozzi, A. L.; Lewis, M. A., A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68, 7, 1601-1623 (2006) · Zbl 1334.92468
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.