×

Realizations of infinite products, Ruelle operators and wavelet filters. (English) Zbl 1326.42040

Authors’ abstract: Using the system theory notion of state-space realization of matrix-valued rational functions, we describe the Ruelle operator associated with wavelet filters. The resulting realization of infinite products of rational functions have the following four features: (1) It is defined in an infinite-dimensional complex domain. (2) Starting with a realization of a single rational matrix-function \(M\), we show that a resulting infinite product realization obtained from \(M\) takes the form of an (infinite-dimensional) Toeplitz operator with the symbol that is a reflection of the initial realization for \(M\). (3) Starting with a subclass of rational matrix functions, including scalar-valued ones corresponding to low-pass wavelet filters, we obtain the corresponding infinite products that realize the Fourier transforms of generators of \(\mathbf{L}_2(\mathbb R)\) wavelets. (4) We use both the realizations for \(M\) and the corresponding infinite product to obtain a matrix representation of the Ruelle-transfer operators used in wavelet theory. By “matrix representation” we refer to the slanted (and sparse) matrix which realizes the Ruelle-transfer operator under consideration.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
65T60 Numerical methods for wavelets
47A48 Operator colligations (= nodes), vessels, linear systems, characteristic functions, realizations, etc.
40A20 Convergence and divergence of infinite products

References:

[1] Alpay, D., Jorgensen, P., Lewkowicz, I.: Extending wavelet filters: infinite dimensions, the non-rational case, and indefinite inner product spaces. In: Excursions in Harmonic Analysis, vol. 2, Appl. Numer. Harmon. Anal., pp. 69-111. Birkhäuser/Springer, New York (2013) · Zbl 1311.65176
[2] Alpay, D., Jorgensen, P., Lewkowicz, I.: Parametrizations of all wavelet filters: input-output and state-space. Sampl. Theory Signal Image Process (STSIP) 12, 159-188 (2013) · Zbl 1346.94013
[3] Alpay, D., Jorgensen, P.E.T., Lewkowicz, I.: Characterizations of Families of Rectangular, Finite Impulse Response, Para-Unitary Systems. arXiv:1410.0280 · Zbl 1409.93022
[4] Alpay, D., Jorgensen, P.E.T., Lewkowicz, I.: Characterizations of Rectangular, (Para)-Unitary Rational Functions“ a manuscript. arXiv:1410.0283 <RefTarget Address=”http://arxiv.org/abs/1410.0283“ TargetType=”URL”/> · Zbl 1376.26013
[5] Alpay, D.; Jorgensen, P.; Lewkowicz, I.; Marziano, I.; Shen, X. (ed.); Zayed, A. (ed.), Representation formulas for Hardy space functions through the Cuntz relations and new interpolation problems, 161-182 (2013), New York · Zbl 1316.41001 · doi:10.1007/978-1-4614-4145-8_7
[6] Bart, H., Gohberg, I., Kaashoek, M.A.: Minimal Factorization of Matrix and Operator Functions. Operator Theory: Advances and Applications, vol. 1. Birkhäuser, Basel (1979) · Zbl 0424.47001 · doi:10.1007/978-3-0348-6293-6
[7] Biagini, F., Hu, Y., Øksendal, B., Zhang, T.: Stochastic Calculus for Fractional Brownian Motion and Applications. Probability and its Applications (New York). Springer, London Ltd., London (2008) · Zbl 1157.60002 · doi:10.1007/978-1-84628-797-8
[8] Bratteli, O., Jorgensen, P.: Wavelets Through a Looking Glass. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston, MA (2002) · Zbl 1012.42023 · doi:10.1007/978-0-8176-8144-9
[9] Bratteli, O., Jorgensen, P.: Wavelet filters and infinite-dimensional unitary groups. In: Wavelet Analysis and Applications (Guangzhou, 1999), vol. 25 of AMS/IP Stud. Adv. Math., pp. 35-65. The American Mathematical Society, Providence, RI (2002) · Zbl 1026.46060
[10] Daubechies, I.: Using Fredholm determinants to estimate the smoothness of refinable functions. In: Approximation Theory VIII, vol. 2 (College Station, TX, 1995), vol. 6 of Ser. Approx. Decompos., pp. 89-112. World Sciecne Publication, River Edge, NJ (1995) · Zbl 0927.42016
[11] Gao, X., Nguyen, T.Q., Strang, G.: On factorization of \[M\] M-channel paraunitary filterbanks. IEEE Trans. Signal Proc. 49, 1433-1446 (2001) · Zbl 1369.94151 · doi:10.1109/78.917806
[12] Gohberg, I., Goldberg, S., Kaashoek, M.: Classes of Linear Operators, Vol. I. Operator Theory: Advances and Applications, vol. 49. Birkhäuser, Basel (1990) · Zbl 0745.47002 · doi:10.1007/978-3-0348-7509-7
[13] Gohberg, I., Kaashoek, M.A.: Block Toeplitz operators with rational symbols. In: Gohberg, I., Helton, J.W., Rodman, L. (eds.) Contributions to Operator Theory and Its Applications (Mesa, AZ, 1987). Oper. Theory Adv. Appl., vol. 35, pp. 385-440. Birkhäuser, Basel (1988) · Zbl 0679.47017
[14] Kailath, T.: Linear Systems. Prentice-Hall Inc., Englewood Cliffs, NJ (1980) · Zbl 0454.93001
[15] Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory. McGraw-Hill Book Co., New York (1969) · Zbl 0231.49001
[16] Lin, Y.-P., Phoong, S.-M., Vaidyanathan, P.P.: Filter Bank Transceivers for OFDM and DMT Systems. Cambridge University Press, Cambridge (2011) · doi:10.1017/CBO9780511757433
[17] Sontag, E.: Mathematical Control Theory. Texts in Applied Mathematics, vol. 6, 2nd edn. Springer, New York (1998). (Deterministic finite-dimensional systems) · Zbl 0945.93001 · doi:10.1007/978-1-4612-0577-7
[18] Tuqan, J., Vaidyanathan, P.P.: A state space approach to the design of globally optimal FIR energy compaction filters. IEEE Trans. Sig. Proc. 48, 2822-2838 (2000) · doi:10.1109/78.869032
[19] Vaidyanathan, P.P.: Multirate Systems and Filter Banks. Signal Processing Series. Prentice-Hall, Englewood Cliffs (1993) · Zbl 0784.93096
[20] van Eijndhoven, S.J.L., Meyers, J.L.H.: New orthogonality relations for the Hermite polynomials and related Hilbert spaces. J. Math. Anal. Appl. 146(1), 89-98 (1990) · Zbl 0708.46027 · doi:10.1016/0022-247X(90)90334-C
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.