×

The dynamics of Zika virus with Caputo fractional derivative. (English) Zbl 1425.37054

Summary: In the present paper, we investigate a fractional model in Caputo sense to explore the dynamics of the Zika virus. The basic results of the fractional Zika model are presented. The local and global stability analysis of the proposed model is obtained when the basic reproduction reproduction number is less or greater than 1. To show the global stability of the fractional Zika model, we use the Lyapunov function theory in fractional environment. Further, we simulate the fractional Zika model to present the graphical results for different values of fractional order and model parameters.

MSC:

37N25 Dynamical systems in biology
26A33 Fractional derivatives and integrals
34A08 Fractional ordinary differential equations
Full Text: DOI

References:

[1] Zika virus, World Health Organization. Available
[2] G. Calvet; R. S. Aguiar; A. S. O. Melo, t al. <em>Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study</em, Lancet infect dis., 16, 653-660 (2016) · doi:10.1016/S1473-3099(16)00095-5
[3] T. A. Perkins; A. S. Siraj; C. W. Ruktanonchai, t al. <em>Model-based projections of Zika virus infections in childbearing women in the Americas</em, Nat. Microbiol., 1 (2016)
[4] A. J. Kucharski, S. Funk, R. M. M. Eggo, et al. <em>Transmission dynamics of Zika virus in island
[5] E. Bonyah and K. O. Okosun, Mathematical modeling of Zika virus, Asian Pacific Journal of Tropical Disease, 6 · Zbl 1425.92179
[6] E. Bonyah, M. A. Khan, K. O. Okosun, et al. A theoretical model for Zika virus transmission, Plos one, 12
[7] I. Podlubny, <em>Fractional differential
[8] S. G. Samko, A. A. Kilbas and O. I. Marichev, <em>Fractional integrals and
[9] A. Atangana and D. Baleanu, em> New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model</em, Therm. Sci., 20, 763-769 (2016) · doi:10.2298/TSCI160111018A
[10] M. Caputo and M. Fabrizio, em>A new definition of fractional derivative without singular kernel</em, Progr. Fract. Differ. Appl., 1, 1-13 (2015)
[11] K. M. Owolabi, em>Numerical solution of diffusive HBV model in a fractional medium</em, SpringerPlus, 5 (2016)
[12] K. M. Owolabi, em>Mathematical modelling and analysis of two-component system with Caputo fractional derivative order</em, Chaos Soliton. Fract., 103, 544-554 (2017) · Zbl 1375.35257 · doi:10.1016/j.chaos.2017.07.013
[13] K. M. Owolabi; A. Atangana, em>Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations</em, Chaos Soliton. Fract., 111, 119-127 (2018) · Zbl 1395.65026 · doi:10.1016/j.chaos.2018.04.019
[14] E. Bas; R. Ozarslan, em>Real world applications of fractional models by Atangana-Baleanu fractional derivative</em, Chaos Soliton. Fract., 116, 121-125 (2018) · Zbl 1442.34008 · doi:10.1016/j.chaos.2018.09.019
[15] E. Bas; R. Ozarslan; D. Baleanu, em>Comparative simulations for solutions of fractional Sturm-Liouville problems with non-singular operators</em, Adv. Differ. Equ-NY, 2018 (2018)
[16] E. Bas, em>The Inverse Nodal problem for the fractional diffusion equation</em, Acta Sci-Technol, 37, 251-257 (2015) · doi:10.4025/actascitechnol.v37i2.17273
[17] E. Bas; F. Metin, em>Fractional singular Sturm-Liouville operator for Coulomb potential</em, Adv. Differ. Equ-NY, 2013 (2013)
[18] S. Ullah; M. A. Khan and M. F. Farooq, em> A new fractional model for the dynamics of Hepatitis B virus using Caputo-Fabrizio derivative</em, European Physical Journal Plus, 133 (2018)
[19] M. A. Khan, S. Ullah and M. F. Farooq, A new fractional model for tuberculosis with relapse via AtanganaBaleanu derivative, Chaos Soliton. Fract., 116 · Zbl 1442.92150
[20] M. A. Khan; S. Ullah and M. F. Farooq, em>A fractional model for the dynamics of TB virus</em, Chaos Soliton. Fract., 116, 63-71 (2018) · Zbl 1442.92182 · doi:10.1016/j.chaos.2018.09.001
[21] B. S. T. Alkahtani; A. Atangana; I. Koca, em>Novel analysis of the fractional Zika model using the Adams type predictor-corrector rule for non-singular and non-local fractional operators</em, The Journal of Nonlinear Sciences and Applications, 10, 3191-3200 (2017) · Zbl 1412.34059 · doi:10.22436/jnsa.010.06.32
[22] H. Elsaka and E. Ahmed, A fractional order network model for ZIKA, BioRxiv, 2016.
[23] D. Hadi, D. Baleanu and J. Sadati, Stability analysis of Caputo fractional-order nonlinear systems revisited, Nonlinear Dynam., 67 · Zbl 1243.93081
[24] V. D. L. Cruz, em>Volterra-type Lyapunov functions for fractional-order epidemic systems</em, Commun. Nonlinear Sci., 24, 75-85 (2015) · Zbl 1440.92067 · doi:10.1016/j.cnsns.2014.12.013
[25] Z. M. Odibat and N. T. Shawagfeh, Generalized Taylors formula, Appl. Math. Comput., 186 · Zbl 1122.26006
[26] W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 · Zbl 1113.37016
[27] H. A. Antosiewicz, J. K. Hale, Studies in Ordinary Differential Equations
[28] P. van den Driessche and J. Watmough, em>Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission</em, Bellman Prize in Mathematical Biosciences, 180, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.