×

A reliable and competitive mathematical analysis of Ebola epidemic model. (English) Zbl 1486.92272

Summary: The purpose of this article is to discuss the dynamics of the spread of Ebola virus disease (EVD), a kind of fever commonly known as Ebola hemorrhagic fever. It is rare but severe and is considered to be extremely dangerous. Ebola virus transmits to people through domestic and wild animals, called transmitting agents, and then spreads into the human population through close and direct contact among individuals. To study the dynamics and to illustrate the stability pattern of Ebola virus in human population, we have developed an SEIR type model consisting of coupled nonlinear differential equations. These equations provide a good tool to discuss the mode of impact of Ebola virus on the human population through domestic and wild animals. We first formulate the proposed model and obtain the value of threshold parameter \(\mathcal{R}_0\) for the model. We then determine both the disease-free equilibrium (DFE) and endemic equilibrium (EE) and discuss the stability of the model. We show that both the equilibrium states are locally asymptotically stable. Employing Lyapunov functions theory, global stabilities at both the levels are carried out. We use the Runge-Kutta method of order 4 (RK4) and a non-standard finite difference (NSFD) scheme for the susceptible-exposed-infected-recovered (SEIR) model. In contrast to RK4, which fails for large time step size, it is found that the NSFD scheme preserves the dynamics of the proposed model for any step size used. Numerical results along with the comparison, using different values of step size \(h\), are provided.

MSC:

92D30 Epidemiology
37N25 Dynamical systems in biology

Software:

Be-CoDiS

References:

[1] World Health Organization-Ebola virus disease. Fact sheet No 103. https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease (2014)
[2] Tahir, M.; Shah, S. I.A.; Zaman, G.; Muhammad, S., Ebola virus epidemic disease its modeling and stability analysis required abstain strategies, Cogent Biol., 4 (2018)
[3] Tahir, M.; Anwar, N.; Shah, S. I.A.; Khan, T., Modeling and stability analysis of epidemic expansion disease Ebola virus with implications prevention in population, Cogent Biol., 5 (2019)
[4] Ahmad, W., Rafiq, M., Abbas, M.: Mathematical analysis to control the spread of Ebola virus epidemic through voluntary vaccination. Eur. Phys. J. Plus (2020, in press)
[5] CDC. Outbreaks Chronology: Ebola Virus Disease. Centers for Disease Control and Prevention (CDC), Atlanta, USA. https://www.cdc.gov/vhf/ebola/history/chronology.html
[6] Chronology of Ebola Virus Disease Outbreaks, 1976-2014. Submitted 06/10/2014
[7] Ebola Outbreak in West Africa-Reported Cases Graphs 2016. https://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/cumulative-cases-graphs.html (2014). Accessed 23 March 2017
[8] Pandey, A.; Atkins, K. E.; Medlock, J.; Wenzel, N.; Townsend, J. P.; Childs, J. E., Strategies for containing Ebola in West Africa, Science, 346, 6212, 991-995 (2014)
[9] Olu, O. O.; Lamunu, M.; Nanyunja, M.; Dafae, F.; Samba, T.; Sempiira, N., Contact tracing during an outbreak of Ebola virus disease in the western area districts of Sierra leone: lessons for future Ebola outbreak response, Front. Public Health, 4 (2016)
[10] Martyn, A. C.; Derrough, T.; Honomou, P.; Kolie, N.; Diallo, B.; Kone, M., Social and cultural factors behind community resistance during an Ebola outbreak in a village of the Guinean Forest region, February 2015: a field experience, Int. Health, 8, 3, 227-229 (2016)
[11] Marais, F.; Minkler, M.; Gibson, N.; Mwau, B.; Mehtar, S.; Ogunsola, F., A community-engaged infection prevention and control approach to Ebola, Health Promot. Int., 31, 2, 440-449 (2016)
[12] Nyenswah, T. G.; Kateh, F.; Bawo, L.; Massaquoi, M.; Gbanyan, M.; Fallah, M., Ebola and its control in Liberia, 2014-2015, Emerg. Infect. Dis., 22, 2, 169-177 (2016)
[13] WHO: Ebola virus disease, Democratic Republic of the Congo, external situation report 45. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/325242/SITREP_EVD_DRC_UGA20190612-eng.pdf?ua=1 (2019). Accessed 12 June 2019
[14] WHO: Ebola virus disease-Democratic Republic of the Congo Disease outbreak news. https://www.who.int/csr/don/13-june-2019-ebola-drc/en/ (2019). Accessed 15 June 2019
[15] Kivu Security Tracker: https://kivusecurity.org/map#
[16] DRC Ebola outbreaks: Crisis update-2019 (Reliefweb). Published 2 August 2019
[17] Hu, Z.; Teng, Z.; Jiang, H., Stability analysis in a class of discrete SIRS epidemic models, Nonlinear Anal., Real World Appl., 13, 2017-2033 (2012) · Zbl 1254.92082
[18] Suryanto, A., A dynamically consistent nonstandard numerical scheme for epidemic model with saturated incidence rate, Int. J. Math. Comput., 13, 112-123 (2011)
[19] Suryanto, A., Stability and bifurcation of a discrete SIS epidemic model with delay, Proceedings of the 2nd International Conference on Basic Sciences, 1-6 (2012)
[20] Mickens, R. E., Nonstandard Finite Difference Models of Differential Equations (1994), Singapore: World Scientific, Singapore · Zbl 0810.65083
[21] Driessche, P. V.D.; Wathmough, J., Reproductive number and sub-threshold endemic equilibria for compartment modelling of disease transmission, Math. Biosci. Interact., 180, 29-48 (2005) · Zbl 1015.92036
[22] Onuorah Martins, O.; Nasir, M. O.; Ojo Moses, S.; Ademu, A., A deterministic mathematical model for Ebola virus incorporating the vector population 2016, Int. J. Math. Trends Technol., 30, 1, 8-15 (2016)
[23] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036
[24] Bani-Yabhoub, M.; Gautam, R.; Shuai, Z.; van den Driessche, P.; Ivanek, R., Reproduction numbers for infections with free-living pathogens growing in the environment, J. Biol. Dyn., 6, 2, 923-940 (2012) · Zbl 1447.92395
[25] Dietz, K., The estimation of basic reproductive number \(R_0\) for infectious disease, Stat. Methods Med. Res., 2, 23-41 (1993)
[26] Diekmann, O. J.A.; Heesterbeek, J. A.; Metz, J. A.J., On the definition and computation of basic reproductive ratio \(R_0\) in the model for infectious disease in a heterogeneous population, J. Math. Biol., 28, 365-382 (1990) · Zbl 0726.92018
[27] Berge, T.; Bowong, S.; Lubuma, J.; Manyombe, M. L.M., Modeling Ebola virus disease transmissions with reservoir in a complex virus life ecology, Math. Biosci. Eng., 15, 1, 21-56 (2018) · Zbl 1378.34071
[28] Chowell, G.; Tariq, A.; Kiskowski, M., Vaccination strategies to control Ebola epidemics in the context of variable household inaccessibility levels, PLoS Negl. Trop. Dis., 13, 11 (2019)
[29] Brettin, A.; Rossi-Goldthorpe, R.; Weishaar, K.; Erovenko, I. V., Ebola could be eradicated through voluntary vaccination, R. Soc. Open Sci., 5 (2018)
[30] Butt, A. I.K.; Abbas, M.; Ahmad, W., A mathematical analysis of an isothermal tube drawing process, Alex. Eng. J., 59, 3419-3429 (2020)
[31] Potluri, R.; Kumar, A.; Maheshwari, V.; Smith, C.; Oriol Mathieu, V.; Luhn, K., Impact of prophylactic vaccination strategies on Ebola virus transmission: a modeling analysis, PLoS ONE, 15, 4 (2020)
[32] Area, I.; Ndairou, F.; Nieto, J. J., Ebola model and optimal control with vaccination constraints, J. Ind. Manag. Optim., 14, 2, 427-446 (2018) · Zbl 1412.49005
[33] Tang, Y.; Yuan, R.; Ma, Y., Determine dynamical behaviors by the Lyapunov function in competitive Lotka-Volterra systems, Phys. Rev. E, 87, 1 (2013)
[34] Berge, T.; Lubuma, J. M.-S., A simple mathematical model foe Ebola virus in Africa, J. Biol. Dyn., 11, 1, 42-74 (2017) · Zbl 1448.92276
[35] Agusto, F. B.; Teboh-Ewungkem, M. I.; Gumel, A. B., Mathematical assessment of the effect of traditional beliefs and customs on the transmission dynamics of the 2014 Ebola outbreaks, BMC Med., 13 (2015)
[36] Berge, T.; Bowong, S.; Lubuma, J. M.-S., Global stability of a two patch cholera model with fast and slow transmissions, Math. Comput. Simul., 133, 142-164 (2017) · Zbl 1540.92177
[37] Bibby, K.; Casson, L. W.; Stachler, E.; Haas, C. N., Ebola virus persistence in the environment: state of the knowledge and research needs, Environ. Sci. Technol. Lett., 2, 2-6 (2015)
[38] Castillo-Chavez, C.; Feng, Z.; Huang, W., On the computation of \(R_0\) and its role on global stability, Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, 229-250 (2002), New York: Springer, New York · Zbl 1021.92032
[39] Chowell, G.; Nishiura, H., Transmission dynamics and control of Ebola virus disease (EVD): a review, BMC Med., 12 (2014)
[40] Dumont, Y.; Russell, J. C.; Lecomte, V.; Le Corre, M., Conservation of endangered endemic seabirds within a multi-predator context: the Barau’s petrel in Reunion island, Nat. Resour. Model., 23, 381-436 (2010) · Zbl 1402.92340
[41] The Centers for Disease Control and Prevention: Ebola (Ebola Virus Disease). http://www.cdc.gov/ebola/resources/virus-ecology.html. Accessed 1 August 2014
[42] Espinoza, B., Moreno, V., Bichara, D., Castillo-Chavez, C.: Assessing the efficiency of Cordon Sanitaire as a control strategy of Ebola (2015). arXiv:1510.07415v1 · Zbl 1347.92089
[43] Fasina, F. O.; Shittu, A.; Lazarus, D.; Tomori, O.; Simonsen, L.; Viboud, C.; Chowell, G., Transmission dynamics and control of Ebola virus disease outbreak in Nigeria, July to September 2014, Euro Surveill., 19, 40 (2014)
[44] Fisman, D.; Khoo, E.; Tuite, A., Early epidemic dynamics of the Western African 2014 Ebola outbreak: estimates derived with a simple two Parameter model, PLoS Curr., 2014 (2014)
[45] Francesconi, P.; Yoti, Z.; Declich, S.; Onek, P. A.; Fabiani, M.; Olango, J.; Andraghetti, R.; Rollin, P. E.; Opira, C.; Greco, D.; Salmaso, S., Ebola hemorrhagic fever transmission and risk factors of contacts, Uganda, Emerg. Infect. Dis., 9, 11, 1430-1437 (2003)
[46] Ivorra, B.; Ngom, D.; Ramos, A. M., Be-CoDiS: a mathematical model to predict the risk of human diseases spread between countries-validation and application to the 2014-2015 Ebola virus disease epidemic, Bull. Math. Biol., 77, 1668-1704 (2015) · Zbl 1339.92085
[47] Ndanguza, D.; Tchuenche, J. M.; Haario, H., Statistical data analysis of the 1995 Ebola outbreak in the Democratic Republic of Congo, Afr. Math., 24, 55-68 (2013) · Zbl 1271.62264
[48] Piercy, T. J.; Smither, S. J.; Steward, J. A.; Eastaugh, L.; Lever, M. S., The survival of filoviruses in liquids, on solid substrates and in a dynamic aerosol, J. Appl. Microbiol., 109, 5, 1531-1539 (2010)
[49] Rachah, A.; Torres, D. F.M., Mathematical modelling, simulation, and optimal control of the 2014 Ebola outbreak in West Africa, Discrete Dyn. Nat. Soc., 0 (2015) · Zbl 1418.92188
[50] Roeger, L. W., Exact difference schemes, A. B. Gumel Mathematics of Continuous and Discrete Dynamical Systems, 147-161 (2014), Providence: Am. Math. Soc., Providence · Zbl 1330.65119
[51] Smith, H. L., Monotone Dynamical Systems, an Introduction to the Theory of Competitive and Cooperative Systems (1995), Providence: AMS, Providence · Zbl 0821.34003
[52] Towers, S.; Patterson-Lomba, O.; Castillo-Chavez, C., Temporal variations in the effective reproduction number of the 2014 West Africa Ebola outbreak, PLoS Curr., 2014 (2014)
[53] Wang, X.-S.; Zhong, L., Ebola outbreak in West Africa: real-time estimation and multiple wave prediction, Math. Biosci. Eng., 12, 5, 1055-1063 (2015) · Zbl 1354.92094
[54] Legrand, J.; Grais, R. F.; Boelle, P. Y.; Valleron, A. J.; Flahault, A., Understanding the dynamics of Ebola epidemics, Epidemiol. Infect., 135, 610-621 (2007)
[55] Lekone, P. E.; Finkenstadt, B. F., Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study, Biometrics, 62, 1170-1177 (2006) · Zbl 1114.62120
[56] Leroy, E. M.; Kumulungui, B.; Pourrut, X.; Rouquet, P.; Hassanin, A.; Yaba, P.; Delicat, A.; Paweska, J. T.; Gonzalez, J.-P.; Swanepoel, R., Fruit bats as reservoirs of Ebola virus, Nature, 438, 575-576 (2005)
[57] LaSalle, J. P., The Stability of Dynamical Systems (1976), Philadelphia: SIAM, Philadelphia · Zbl 0364.93002
[58] Asghar, M.; Rafiq, M.; Ozair Ahmad, M., Numerical analysis of a modified SIR epidemic model with the effect of time delay, Punjab Univ. J. Math., 51, 1, 79-90 (2019)
[59] Butt, A. I.K.; Ahmad, W.; Ahmad, N., Numerical based approach to develop analytical solution of a steady-state melt-spinning model, Br. J. Math. Comput. Sci., 18, 4, 1-9 (2016)
[60] Villanueva, R. J.; Arenas, A. J.; Gonzalez-Parra, G., A nonstandard dynamically consistent numerical scheme applied to obesity dynamics, J. Appl. Math., 2008 (2008) · Zbl 1157.92028
[61] Dimitrov, D. T.; Kojouharov, H. V., Positive and elementary stable nonstandard numerical methods with applications to predator-prey models, J. Comput. Appl. Math., 189, 98-108 (2006) · Zbl 1087.65068
[62] Anguelov, R.; Lubuma, J. M.-S., Contributions to the mathematics of the nonstandard finite difference method and applications, Numer. Methods Partial Differ. Equ., 17, 518-543 (2001) · Zbl 0988.65055
[63] Gumel, A. B.; Patidar, K. C.; Spiteri, R. J.; Mickens, R. E., Asymptotically consistent non-standard finite difference methods for solving mathematical models arising in population biology, Advances in the Applications of Nonstandard Finite Difference Schemes, 385-421 (2005), Hackensack: World Scientific, Hackensack · Zbl 1086.65080
[64] Lubuma, J. M.-S.; Patidar, K. C., Non-standard methods for singularly perturbed problems possessing oscillatory/layer solutions, Appl. Math. Comput., 187, 2, 1147-1160 (2007) · Zbl 1128.65060
[65] Mickens, R. E., Applications of Nonstandard Finite Difference Schemes (2000), Singapore: World Scientific, Singapore · Zbl 0989.65101
[66] Mickens, R. E., Nonstandard finite difference schemes for differential equations, J. Differ. Equ. Appl., 8, 823-847 (2002) · Zbl 1010.65032
[67] Mickens, R. E., Advances in the Applications of Nonstandard Finite Difference Schemes (2005), Singapore: World Scientific, Singapore · Zbl 1079.65005
[68] Anguelov, R.; Dumont, Y.; Lubuma, J. M.-S.; Shillor, M., Comparison of some standard and nonstandard numerical methods for the MSEIR epidemiological model, AIP Conf. Proc., 1168 (2009) · Zbl 1183.37147
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.