×

Fighting a virus with a virus: A dynamic model for HIV-1 therapy. (English) Zbl 1021.92015

Summary: A mathematical model examined a potential therapy for controlling viral infections using genetically modified viruses. The control of the infection is an indirect effect of the selective elimination by an engineered virus of infected cells that are the source of the pathogens. Therefore, this engineered virus could greatly compensate for a dysfunctional immune system compromised by AIDS. In vitro studies using engineered viruses have been shown to decrease the HIV-1 load about 1000-fold. However, the efficacy of this potential treatment for reducing the viral load in AIDS patients is unknown.
The present model studied the interactions among the HIV-1 virus, its main host cell (activated CD4+ T cells), and a therapeutic engineered virus in an in vivo context; and it examined the conditions for controlling the pathogen. This model predicted a significant drop in the HIV-1 load, but the treatment does not eradicate HIV. A basic estimation using a currently engineered virus indicated an HIV-1 load reduction of 92% and a recovery of host cells to 17% of their normal level. Greater success (98% HIV reduction, 44% host cells recovery) is expected as more competent engineered viruses are designed. These results suggest that therapy using viruses could be an alternative to extend the survival of AIDS patients.

MSC:

92C50 Medical applications (general)
92C60 Medical epidemiology
93C95 Application models in control theory
Full Text: DOI

References:

[1] Haase, A. T., Population biology of HIV-1 infection: viral and CD4+ T cell demography and dynamics in lymphatic tissues, Ann. Rev. Immunol., 17, 625 (1999)
[2] Levy, J., HIV and the Pathogenesis of AIDS (1998), ASM: ASM Washington, DC
[3] Nolan, G. P., Harnessing viral devices as pharmaceuticals: fighting HIV-1s fire with fire, Cell, 90, 821 (1997)
[4] Wagner, E. K.; Hewlett, M. J., Basic Virology (1999), Blackwell: Blackwell New York
[5] Mebatsion, T.; Finke, S.; Weiland, F.; Conzelmann, K., A CXCR4/CD4 pseudotype rhabdovirus that selectively infects HIV-1 envelope protein-expressing cells, Cell, 90, 841 (1997)
[6] Schnell, M. J.; Johnson, E.; Buonocore, L.; Rose, J. K., Construction of a novel virus that targets HIV-1 infected cells and control HIV-1 infection, Cell, 90, 849 (1997)
[7] Zhang, Z.-Q; Schuler, T.; Zupancic, M.; Wietgrefe, S.; Staskus, K. A.; Reimann, K. A.; Reinhart, T. A.; Rogan, M.; Cavert, W.; Miller, C. J.; Veazey, R. S.; Notermans, D.; Little, S.; Danner, S. A.; Richman, D. D.; Havlir, D.; Wong, J.; Jordan, H. L.; Schacker, T. W.; Racz, P.; Tenner-Racz, K.; Letvin, N. L.; Wolinsky, S.; Haase, A. T., Sexual Transmission and propagation of SIV and HIV in resting and activated CD4+ T cells, Science, 286, 1353 (1999)
[8] Pierson, T.; McArthur, J.; Siliciano, R. F., Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy, Ann. Rev. Immunol., 18, 665 (2000)
[9] Nowak, M. A.; Bangham, C. R.M, Population dynamics of immune responses to persistent viruses, Science, 272, 74 (1996)
[10] Crowe, S.; Mills, J., Virus infections of the immune system, (Stites, D. P.; Terr, A. L.; Parslow, T. E., Basic and Clinic Immunology (1994), Appleton & Lange: Appleton & Lange Norwalk, CT), 689
[11] Nowak, M. A.; May, R., Virus Dynamics (2000), Oxford University Press: Oxford University Press Oxford · Zbl 1101.92028
[12] Phillips, B. N., Reduction of HIV concentration during acute infection: independence from a specific immune response, Science, 271, 497 (1996)
[13] Sachsenberg, N.; Perelson, A. S.; Sabine, Y.; Schock, G. A.; Leduc, D.; Hirschel, B.; Perrin, L., Turnover of CD4+ and CD8+ T lymphocytes in HIV-1 infection as measured by Ki-67 antigen, J. Exp. Med., 187, 1295 (1998)
[14] Roughgarden, J., Theory of Populations Genetics and Evolutionary Ecology (1979), Macmillan: Macmillan New York
[15] Schnell, M. J.; Buonocore, L.; Boritz, E.; Ghosh, H. P.; Chernish, R.; Rose, J. K., Requirement for a non-specific glycoprotein cytoplasmic domain sequence to drive efficient budding of vesicular stomatitis virus, EMBO, 17, 1289 (1998)
[16] Rose, N. F.; Marx, P. A.; Luckay, A.; Nixon, D. F.; Moretto, W. J.; Donahoe, S. M.; Montefiori, D.; Roberts, A.; Buonocore, L.; Rose, J. K., An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants, Cell, 106, 539 (2001)
[17] Nelson, G. W.; Perelson, A. S., Modelling defective interfering virus therapy for AIDS: conditions for DIV survival, Math. Biosci., 125, 127 (1995) · Zbl 0819.92010
[18] Perelson, A. S.; Neumann, A. U.; Markowitz, M.; Leonard, J. M.; Ho, D. D., HIV-1 dynamics in vivo: virion clearance rate, infected cells life-span, and viral generation time, Science, 271, 1582 (1996)
[19] Stafford, M. A.; Corey, L.; Cao, Y.; Daar, E. S.; Ho, D. D.; Perelson, A. S., Modeling plasma virus concentration during primary HIV infection, J. Theor. Biol., 203, 285 (2000)
[20] d’Herelle, P., The Bacteriophage and its Behavior (1926), Williams & Williams: Williams & Williams Baltimore, MD
[21] Sakandelidze, V. M., The combined use of specific phages and antibiotics in different infectious allergoses, Vrachebnoe Delo, 3, 60 (1991)
[22] Slopek, S.; Wener-Dabrowska, B.; Dabrowska, M.; Kucharewicz-Krikowska, A., Results of bacteriophage treatment of supportive bacterial infections in the years 1981-1986, Arch. Immunol. Ther. Exp., 35, 569 (1997)
[23] Levin, B. R.; Bull, J. J., Phage therapy revisited: the population biology of a bacterial infection and its treatment with bacteriophage and antibiotics, Amer. Nat., 147, 881 (1996)
[24] Carlton, R. M., Phage therapy: past history and future prospects, Arch. Immunol. Exp., 47, 267 (1999)
[25] Sulakvelidze, A.; Alavidze, Z.; Morris, G., Bacteriophage therapy, Antimicrob. Agents Chemother., 45, 649 (2001)
[26] Tillmann, H. L.; Heiken, H.; Knapik-Botor, A.; Heringlake, S.; Ockenga, J.; Wilber, J. C.; Goergen, B.; Detmer, J.; McMorrow, M.; Stoll, M.; Schmidt, R. E.; Manns, M. P., Infection with GB virus C and reduced mortality among HIV-infected patients, N. Engl. J. Med., 345, 715 (2001)
[27] Xiang, J.; Wunschmann, S.; Diekema, D. J.; Klinzman, D.; Patrick, K. D.; George, S. L.; Stapleton, J. T., Effect of coinfection with GB virus C on the survival among patients with HIV infection, N. Engl. J. Med., 345, 707 (2001)
[28] Michie, C. A.; McLean, A.; Alcock, C.; Beverly, P. C.L, Lifespan of human lymphocyte subsets defined by CD45 isoforms, Nature, 360, 264 (1992)
[29] Murray, J. M.; Kaufmann, G.; Kelleher, A. D.; Cooper, D. A., A model of primary HIV infection, Math. Biosci., 154, 57 (1998) · Zbl 0938.92020
[30] Layne, S. P.; Spouge, J. L.; Dembo, M., Quantifying the infectivity of human immunodeficiency virus, Proc. Nat. Acad. Sci. USA, 86, 4644 (1989)
[31] Dimitrov, D. S.; Willey, R. L.; Sato, H.; Chang, L. J.; Blumenthal, R.; Martin, M. A., Quantitation human immunodeficiency virus type 1 infection kinetics, J. Virol., 67, 2182 (1993)
[32] Anderson, R. M.; May, R. M., Infectious Diseases of Humans (1991), Oxford University: Oxford University Oxford
[33] Norris, J. S.; Westwater, C.; Dolan, D., Prokaryotic gene therapy to combat multidrug resistant bacterial infection, Gene Therapy, 7, 723 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.