×

Planar massless fermions in Coulomb and Aharonov-Bohm potentials. (English) Zbl 1260.81076

Summary: Solutions to the Dirac equation are constructed for a massless charged fermion in Coulomb and Aharonov-Bohm (AB) potentials in \(2+1\) dimensions. The Dirac Hamiltonian on this background is singular and needs a one-parameter self-adjoint extension, which can be given in terms of self-adjoint boundary conditions. We show that the virtual (quasistationary) bound states emerge in the presence of an attractive Coulomb potential when the so-called effective charges become overcritical and discuss a restructuring of the vacuum of the quantum electrodynamics when the virtual bound states emerge. We derive equations, which determine the energies and lifetimes of virtual bound states, find solutions of obtained equations for some values of parameters as well as analyze the local density of states (LDOS) as a function of energy in the presence of Coulomb and AB potentials.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81Q40 Bethe-Salpeter and other integral equations arising in quantum theory
81V10 Electromagnetic interaction; quantum electrodynamics
82D80 Statistical mechanics of nanostructures and nanoparticles

References:

[1] DOI: 10.1126/science.1102896 · doi:10.1126/science.1102896
[2] DOI: 10.1103/RevModPhys.81.109 · doi:10.1103/RevModPhys.81.109
[3] DOI: 10.1103/RevModPhys.84.1067 · doi:10.1103/RevModPhys.84.1067
[4] DOI: 10.1038/nature04233 · doi:10.1038/nature04233
[5] DOI: 10.1103/PhysRevLett.99.106802 · doi:10.1103/PhysRevLett.99.106802
[6] DOI: 10.1103/PhysRevLett.99.166802 · doi:10.1103/PhysRevLett.99.166802
[7] DOI: 10.1103/PhysRevLett.99.236801 · doi:10.1103/PhysRevLett.99.236801
[8] DOI: 10.1103/PhysRevLett.104.066404 · doi:10.1103/PhysRevLett.104.066404
[9] DOI: 10.1038/nmat1849 · doi:10.1038/nmat1849
[10] DOI: 10.1016/0550-3213(94)90410-3 · doi:10.1016/0550-3213(94)90410-3
[11] Gonzarlez J., J. Low Temp. Phys. 99 pp 287–
[12] DOI: 10.1103/PhysRevB.80.033413 · doi:10.1103/PhysRevB.80.033413
[13] DOI: 10.1103/PhysRevLett.100.076803 · doi:10.1103/PhysRevLett.100.076803
[14] DOI: 10.1103/PhysRevLett.62.1071 · doi:10.1103/PhysRevLett.62.1071
[15] Greiner W., Quantum Electrodynamics (2009)
[16] DOI: 10.1007/BF02740014 · doi:10.1007/BF02740014
[17] DOI: 10.1103/PhysRevLett.99.246802 · doi:10.1103/PhysRevLett.99.246802
[18] DOI: 10.1103/PhysRevB.80.165429 · doi:10.1103/PhysRevB.80.165429
[19] DOI: 10.1142/S0217732309028886 · Zbl 1165.81324 · doi:10.1142/S0217732309028886
[20] DOI: 10.1007/s11232-007-0004-5 · Zbl 1118.81027 · doi:10.1007/s11232-007-0004-5
[21] DOI: 10.1016/0370-2693(93)90822-Y · doi:10.1016/0370-2693(93)90822-Y
[22] DOI: 10.1103/PhysRevLett.64.503 · Zbl 1050.81707 · doi:10.1103/PhysRevLett.64.503
[23] DOI: 10.1088/1751-8113/44/20/205303 · Zbl 1215.81035 · doi:10.1088/1751-8113/44/20/205303
[24] DOI: 10.1103/PhysRevA.71.012105 · doi:10.1103/PhysRevA.71.012105
[25] DOI: 10.1142/S0217732311035419 · Zbl 1274.81096 · doi:10.1142/S0217732311035419
[26] Gradshteyn I. S., Table of Integrals, Series, and Products (1994) · Zbl 0918.65002
[27] DOI: 10.1016/j.ssc.2009.02.040 · doi:10.1016/j.ssc.2009.02.040
[28] DOI: 10.1103/PhysRevB.82.075316 · doi:10.1103/PhysRevB.82.075316
[29] DOI: 10.1007/s11232-010-0039-x · Zbl 1196.81122 · doi:10.1007/s11232-010-0039-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.