×

Virtual black holes and space-time structure. (English) Zbl 1411.83058

Summary: In the standard formalism of quantum gravity, black holes appear to form statistical distributions of quantum states. Now, however, we can present a theory that yields pure quantum states. It shows how particles entering a black hole can generate firewalls, which however can be removed, replacing them by the “footprints” they produce in the out-going particles. This procedure can preserve the quantum information stored inside and around the black hole. We then focus on a subtle but unavoidable modification of the topology of the Schwarzschild metric: antipodal identification of points on the horizon. If it is true that vacuum fluctuations include virtual black holes, then the structure of space-time is radically different from what is usually thought.

MSC:

83C57 Black holes
83C45 Quantization of the gravitational field
62P35 Applications of statistics to physics
81T10 Model quantum field theories
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
53Z05 Applications of differential geometry to physics

References:

[1] Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation, pp. 875-876. W. H. Freeman, San Francisco (1973)
[2] Bekenstein, J.D.: Nonexistence of baryon number for black holes. II. Phys. Rev. D 5(2403-2412), 8 (1972)
[3] Polchinski, J.: The Black Hole Information Problem. arXiv:1609.04036 [hep-th] 13 Sep (2016) · Zbl 1358.83057
[4] ’t Hooft, G.: On the quantum structure of a black hole. Nucl. Phys. B256, 727-745 (1985) · doi:10.1016/0550-3213(85)90418-3
[5] ’t Hooft, G.: The scattering matrix approach for the quantum black hole: an overview. Int. J. Mod. Phys. 11, 4623-4688 (1996) · Zbl 1044.81683 · doi:10.1142/S0217751X96002145
[6] ’t Hooft, G.: Strings from gravity. In: Brink et al. (eds.) Unification of Fundamental Interactions. Proceedings of Nobel Symposium 67: Marstrand, Sweden, June 2-7, 1986, vol. T15, pp. 143-150. Physica Scripta (1987)
[7] ’t Hooft, G.: The black hole interpretation of string theory. Nucl. Phys. B335, 138-154 (1990) · doi:10.1016/0550-3213(90)90174-C
[8] ’t Hooft, G.: Diagonalizing the black hole information retrieval process. arXiv: 1509.01695
[9] Hawking, S.W.: The unpredictability of quantum gravity. Commun. Math. Phys. 87, 395 (1982) · Zbl 0506.76138 · doi:10.1007/BF01206031
[10] Gibbons, G., Hawking, S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738 (1977) · doi:10.1103/PhysRevD.15.2738
[11] Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? J. High Energy Phys. 2013, 62 (2013) · Zbl 1342.83121 · doi:10.1007/JHEP02(2013)062
[12] Hawking, S.W.: The information paradox for black holes. arXiv: 1509.01147 [hep-th], 3 Sept (2015) · Zbl 1118.83010
[13] ’t Hooft, G.: Black hole unitarity and antipodal entanglement. Found. Phys., 49: (9) 1185-1198. https://doi.org/10.1007/s10701-016-0014-y ; arxiv:1601.03447v4 [gr-qc] · Zbl 1352.83009 · doi:10.1007/s10701-016-0014-y
[14] ’t Hooft, G.: The firewall transformation for black holes and some of its implications. Found. Phys., accepted for publication. arxiv:1612.08640 [gr-qc]
[15] Valatin, J.G.: Comments on the theory of superconductivity. Nuovo Cimento. 7, 843 (1958) · doi:10.1007/BF02745589
[16] Bogolyubov, N.N.: Variational principle in the quantum statistical theory. Nuovo Cimento 7, 794-805 (1958) · Zbl 0090.45402 · doi:10.1007/BF02745585
[17] Bogoliubov, N.: On the theory of superfluidity. J. Phys. 11, 23 (1947)
[18] Aichelburg, P.C., Sexl, R.U.: On the gravitational field of a massless particle. Gen. Rel. Gravit. 2, 303 (1971) · doi:10.1007/BF00758149
[19] Bonnor, W.B.: The gravitational field of light. Commun. Math. Phys. 13, 163 (1969) · Zbl 1522.83015 · doi:10.1007/BF01645484
[20] Dray, T., t Hooft, G.: The gravitational shock wave of a massless particle. Nucl. Phys. B253, 173 (1985) · doi:10.1016/0550-3213(85)90525-5
[21] Penrose, R.: Conformal treatment of infinity. In: de Witt C. & de Witt B, (eds.) Relativity, Groups and Topology pp. 563-584. Gordon and Breach, New York (1964); republished Gen. Rel. Gravit. 43(2011) 901-922, https://doi.org/10.1007/s10714-010-1110-5 · Zbl 1215.83019 · doi:10.1007/s10714-010-1110-5
[22] ’t Hooft, G.: The quantum black hole as a hydrogen atom: microstates without strings attached, e-Print: arXiv:1605.05119 [gr-qc] (2016)
[23] Betzios, P., Gaddam, N., Papadoulaki, O.: The black hole S-Matrix from quantum mechanics. JHEP 1611, 131 (2016). https://doi.org/10.1007/JHEP11 (2016) 131; e-Print. arXiv:1607.07885 [hep-th] · Zbl 1390.83177
[24] Sanchez, N.: Semi classical quantum gravity in two and four dimensions. In: B. Carter and J.B. Hartle (eds.) Gravitation in Astrophysics. Cargèse 1986 (Nato Science Series B)
[25] Sanchez, N., Whiting, B.F.: Quantum field theory and the antipodal identification of black-holes. Nucl. Phys. B 283, 605-623 (1987) · doi:10.1016/0550-3213(87)90289-6
[26] Dvali, G.: Non-thermal corrections to hawking radiation versus the information paradox. Fortsch. Phys.64: 106-108 (2016). arXiv:1509.04645 [hep-th]; G. Dvali, personal communication · Zbl 1339.83041 · doi:10.1002/prop.201500096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.