×

Irreducible identity sets for polynomial automorphisms. (English) Zbl 0806.14011

The author studies polynomial automorphisms of algebraic, affine and projective, varieties over \(\mathbb{C}\). First, he proves that every \((n-1)\)- dimensional component of the set of fixed points of a polynomial automorphism of \(\mathbb{C}^ n\) is uniruled at infinity. Second, he gives classes of hypersurfaces which are identity sets for polynomial automorphisms and sets determining polynomial automorphisms of \(\mathbb{C}^ n\), respectively. Third, he gives classes of hypersurfaces \(V\) in projective manifolds \(X\) (in particular in \(\mathbb{P}^ n (\mathbb{C})\) and \(\mathbb{C}^ n)\) for which every polynomial automorphism of the set \(X \backslash V\) can be extended to a polynomial automorphism of \(X\).

MSC:

14J50 Automorphisms of surfaces and higher-dimensional varieties
32H25 Picard-type theorems and generalizations for several complex variables
14J26 Rational and ruled surfaces
13F20 Polynomial rings and ideals; rings of integer-valued polynomials

References:

[1] Griffiths, P., Harris, J.: Principles of Algebraic Geometry. New York: Wiley 1978 · Zbl 0408.14001
[2] Hartshorne, R.: Algebraic Geometry. Berlin Heidelberg New York: Springer 1987 · Zbl 0659.14020
[3] Hironaka, M.: Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. Math., II. Ser.79, 109–326 (1964) · Zbl 0122.38603 · doi:10.2307/1970486
[4] Hurwitz, A.: Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann.41, 403–443 (1892) · JFM 24.0380.02 · doi:10.1007/BF01443420
[5] Jelonek, Z.: The Extension of Regular and Rational Emmbeddings. Math. Ann.277, 113–120 (1987) · Zbl 0611.14010 · doi:10.1007/BF01457281
[6] Jelonek, Z.: Sets determining polynomial automorphisms of \(\mathbb{C}\)2. Bull. Acad. Pol. Math.37, no. 1-6 (1989) · Zbl 0774.14010
[7] Jelonek, Z.: The sets of points at which the polynomial mapping is not proper. Preprint CRM, no. 141 (March 1992)
[8] Jelonek, Z.: Identity sets for polynomial automorphisms. J. Pure Appl. Algebra76, 333–339 (1991) · Zbl 0752.14010 · doi:10.1016/0022-4049(91)90141-N
[9] Jelonek, Z.: Affine smooth varieties with finite group of automorphisms. Preprint CRM, no. 167 (September 1992) · Zbl 0824.14012
[10] Kraft, H.: Algebraic automorphisms of affine space. In: Kraft, H. et al. (eds.) Topological Methods in Algebraic Transformation Groups, pp. 81–105. Proc. of a Conf. at Rutgers University Boston Basel Stuttgart, Birkhäuser 1989
[11] Matsumura, H.: On algebraic groups of birational transformations. Rend. Accad. Naz. Lincei34, 151–155 (1963) · Zbl 0134.16601
[12] Matsumura, H., Monsky, P.: On the automorphisms of hypersurfaces J. Math. Kyoto Univ.3-3, 347–361 (1964) · Zbl 0141.37401
[13] McKay, J., Wang, S.: An inversion formula for two polynomials in two variables. J. Pure Appl. Algebra40, 245–257 (1986) · Zbl 0622.13003 · doi:10.1016/0022-4049(86)90044-7
[14] McKay, J., Wang, S.: On the inversion formula for two polynomials in two variables. J. Pure Appl. Algebra52, 103–119 (1988) · Zbl 0664.13001 · doi:10.1016/0022-4049(88)90138-7
[15] Miyaoka, M., Mori, S.: A numerical criterion for uniruledness. Ann. Math.124, 65–69 (1986) · Zbl 0606.14030 · doi:10.2307/1971387
[16] Mumford, D.: Algebraic Geometry I. Berlin Heidelberg New York: Springer 1976 · Zbl 0356.14002
[17] Nagata, M.: On automorphism group ofk[x, y]. Tokyo: Kinokuniya 1972 · Zbl 0306.14001
[18] Shafarewich, I.R.: Basic Algebraic Geometry. Berlin Heidelberg New York: Springer 1974
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.