×

The Hessian Sobolev inequality and its extensions. (English) Zbl 1335.35075

Summary: The Hessian Sobolev inequality of X.-J. Wang [Indiana Univ. Math. J. 43, No. 1, 25–54 (1994; Zbl 0805.35036)], and the Hessian Poincaré inequalities of N. S. Trudinger and X.-J. Wang [Calc. Var. Partial Differ. Equ. 6, No. 4, 315–328 (1998; Zbl 0927.58013)] are fundamental to differential and conformal geometry, and geometric PDE. These remarkable inequalities were originally established via gradient flow methods. In this paper, direct elliptic proofs are given, and extensions to trace inequalities with general measures in place of Lebesgue measure are obtained. The new techniques rely on global estimates of solutions to Hessian equations in terms of Wolff’s potentials, and duality arguments making use of a non-commutative inner product on the cone of \(k\)-convex functions.

MSC:

35J87 Unilateral problems for nonlinear elliptic equations and variational inequalities with nonlinear elliptic operators
31C45 Other generalizations (nonlinear potential theory, etc.)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] D. R. Adams, <em>Function Spaces and Potential Theory,</em>, Springer (1996) · doi:10.1007/978-3-662-03282-4
[2] L. Caffarelli, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian,, Acta Math., 155, 261 (1985) · Zbl 0654.35031 · doi:10.1007/BF02392544
[3] C. Fefferman, The uncertainty principle,, Bull. Amer. Math. Soc., 9, 129 (1983) · Zbl 0526.35080 · doi:10.1090/S0273-0979-1983-15154-6
[4] F. Ferrari, Hessian inequalities and the fractional Laplacian,, J. reine angew. Math., 667, 133 (2012) · Zbl 1273.49047 · doi:10.1515/CRELLE.2011.116
[5] F. Ferrari, Radial fractional Laplace operators and Hessian inequalities,, J. Diff. Eqs., 253, 244 (2012) · Zbl 1306.35139 · doi:10.1016/j.jde.2012.03.024
[6] L. I. Hedberg, Thin sets in nonlinear potential theory,, Ann. Inst. Fourier (Grenoble), 33, 161 (1983) · Zbl 0508.31008 · doi:10.5802/aif.944
[7] T. Kilpeläinen, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172, 137 (1994) · Zbl 0820.35063 · doi:10.1007/BF02392793
[8] D. A. Labutin, Potential estimates for a class of fully nonlinear elliptic equations,, Duke Math. J., 111, 1 (2002) · Zbl 1100.35036 · doi:10.1215/S0012-7094-02-11111-9
[9] V. G. Maz’ya, <em>Sobolev Spaces, with Applications to Elliptic Partial Differential Equations,</em>, 2nd augmented ed. (2011) · Zbl 1217.46002 · doi:10.1007/978-3-642-15564-2
[10] N. C. Phuc, Quasilinear and Hessian equations of Lane-Emden type,, Ann. Math., 168, 859 (2008) · Zbl 1175.31010 · doi:10.4007/annals.2008.168.859
[11] N. C. Phuc, Singular quasilinear and Hessian equations and inequalities,, J. Funct. Anal., 256, 1875 (2009) · Zbl 1169.35026 · doi:10.1016/j.jfa.2009.01.012
[12] W. Sheng, The Yamabe problem for higher order curvatures,, J. Diff. Geom., 77, 515 (2007) · Zbl 1133.53035
[13] N. S. Trudinger, On the Dirichlet problem for Hessian equations,, Acta Math., 175, 151 (1995) · Zbl 0887.35061 · doi:10.1007/BF02393303
[14] N. S. Trudinger, On new isoperimetric inequalities and symmetrization,, J. reine angew. Math., 488, 203 (1997) · Zbl 0883.52006 · doi:10.1515/crll.1997.488.203
[15] N. S. Trudinger, Weak solutions of Hessian equations,, Comm. PDE, 22, 1251 (1997) · Zbl 0883.35035 · doi:10.1080/03605309708821299
[16] N. S. Trudinger, A Poincaré type inequality for Hessian integrals,, Calc. Var. PDE, 6, 315 (1998) · Zbl 0927.58013 · doi:10.1007/s005260050093
[17] N. S. Trudinger, Hessian measures I,, Topol. Meth. Nonlin. Anal., 10, 225 (1997) · Zbl 0915.35039
[18] N. S. Trudinger, Hessian measures II,, Ann. Math., 150, 579 (1999) · Zbl 0947.35055 · doi:10.2307/121089
[19] N. S. Trudinger, On the weak continuity of elliptic operators and applications to potential theory,, Amer. J. Math., 124, 369 (2002) · Zbl 1067.35023 · doi:10.1353/ajm.2002.0012
[20] K. Tso, On symmetrization and Hessian equations,, J. Anal. Math., 52, 94 (1989) · Zbl 0675.35040 · doi:10.1007/BF02820473
[21] K. Tso, On a real Monge-Ampère functional,, Invent. Math., 101, 425 (1990) · Zbl 0724.35040 · doi:10.1007/BF01231510
[22] I. E. Verbitsky, Nonlinear potentials and trace inequalities,, in The Maz’ya Anniversary Collection, 110, 323 (1999) · Zbl 0941.31001 · doi:10.1007/978-3-0348-8672-7_18
[23] I. E. Verbitsky, Hessian Sobolev and Poincaré inequalities,, Oberwolfach Reports, 36, 2077 (2011) · Zbl 1349.00229 · doi:10.4171/OWR/2011/36
[24] X. J. Wang, A class of fully nonlinear elliptic equations and related functionals,, Indiana Univ. Math. J., 43, 25 (1994) · Zbl 0805.35036 · doi:10.1512/iumj.1994.43.43002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.