×

A Schechter type critical point result in annular conical domains of a Banach space and applications. (English) Zbl 1338.47117

Summary: Using Ekeland’s variational principle we obtain a critical point theorem of Schechter type for extrema of a functional in an annular conical domain of a Banach space. The result can be seen as a variational analogue of Krasnoselskii’s fixed point theorem in cones and can be applied for the existence, localization and multiplicity of the positive solutions of variational problems. The result is then applied to \(p\)-Laplace equations, where the geometric condition on the boundary of the annular conical domain is established via a weak Harnack type inequality given in terms of the energetic norm. This method can be applied also to other homogeneous operators in order to obtain existence, multiplicity or infinitely many solutions for certain classes of quasilinear equations.

MSC:

47J30 Variational methods involving nonlinear operators
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
34B15 Nonlinear boundary value problems for ordinary differential equations
Full Text: DOI

References:

[1] G. Bonanno, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities,, Bound. Value Probl. (2009) · Zbl 1177.34038
[2] M. Belloni, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators,, Z. Angew. Math. Phys., 54, 771 (2003) · Zbl 1099.35509 · doi:10.1007/s00033-003-3209-y
[3] F. Della Pietra, Anisotropic elliptic problems involving Hardy-type potential,, J. Math. Anal. Appl., 397, 800 (2013) · Zbl 1310.35123 · doi:10.1016/j.jmaa.2012.08.008
[4] G. Dinca, Variational and topological methods for Dirichlet problems with \(p\)-Laplacian,, Port. Math. (N.S.), 58, 339 (2001) · Zbl 0991.35023
[5] J. Diestel, <em>Geometry of Banach Spaces - Selected Topics</em>,, Lecture Notes in Mathematics (1975) · Zbl 0307.46009
[6] I. Ekeland, Nonconvex minimization problems,, Bull. Amer. Math. Soc. (N.S.), 1, 443 (1979) · Zbl 0441.49011 · doi:10.1090/S0273-0979-1979-14595-6
[7] F. Faraci, One-dimensional scalar field equations involving an oscillatory nonlinear term,, Discrete Contin. Dyn. Syst., 18, 107 (2007) · Zbl 1151.34026 · doi:10.3934/dcds.2007.18.107
[8] V. Ferone, Remarks on a Finsler-Laplacian,, Proc. Amer. Math. Soc., 137, 247 (2009) · Zbl 1161.35017 · doi:10.1090/S0002-9939-08-09554-3
[9] M. Frigon, On a new notion of linking and application to elliptic problems at resonance,, J. Differential Equations, 153, 96 (1999) · Zbl 0922.35044 · doi:10.1006/jdeq.1998.3540
[10] N. Ghoussoub, A general mountain pass principle for locating and classifying critical points,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6, 321 (1989) · Zbl 0711.58008
[11] R. Glowinski, Sur l’approximation par éléments finis d’ordre un et la resolution par penalisation-dualité d’une classe de problemes de Dirichlet non linéaires,, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 9, 41 (1975) · Zbl 0368.65053
[12] D. Guo, Some extensions of the mountain pass lemma,, Differential Integral Equations, 1, 351 (1988) · Zbl 0746.47041
[13] M. A. Krasnoselskii, <em>Positive Solutions of Operator Equations</em>,, Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron (1964) · Zbl 0121.10604
[14] A. Kristály, Infinitely many solutions for a differential inclusion problem in \(\mathbbR^N\),, J. Differential Equations, 220, 511 (2006) · Zbl 1194.35523 · doi:10.1016/j.jde.2005.02.007
[15] L. Ma, Mountain pass on a closed convex set,, J. Math. Anal. Appl., 205, 531 (1997) · Zbl 0895.58055 · doi:10.1006/jmaa.1997.5227
[16] S. A. Marano, Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the \(p\)-Laplacian,, J. Differential Equations, 182, 108 (2002) · Zbl 1013.49001 · doi:10.1006/jdeq.2001.4092
[17] M. Marcus, Every superposition operator mapping one Sobolev space into another is continuous,, J. Funct. Anal., 33, 217 (1979) · Zbl 0418.46024 · doi:10.1016/0022-1236(79)90113-7
[18] R. Precup, The Leray-Schauder boundary condition in critical point theory,, Nonlinear Anal., 71, 3218 (2009) · Zbl 1186.58012 · doi:10.1016/j.na.2009.01.195
[19] R. Precup, On a bounded critical point theorem of Schechter,, Stud. Univ. Babeş-Bolyai Math., 58, 87 (2013) · Zbl 1299.47143
[20] R. Precup, Critical point localization theorems via Ekeland’s variational principle,, Dynam. Systems Appl., 22, 355 (2013) · Zbl 1524.47126
[21] P. Pucci, A mountain pass theorem,, J. Differential Equations, 60, 142 (1985) · Zbl 0585.58006 · doi:10.1016/0022-0396(85)90125-1
[22] B. Ricceri, A general variational principle and some of its applications,, J. Comput. Appl. Math., 113, 401 (2000) · Zbl 0946.49001 · doi:10.1016/S0377-0427(99)00269-1
[23] B. Ricceri, Infinitely many solutions of the Neumann problem for elliptic equations involving the \(p\)-Laplacian,, Bull. London Math. Soc., 33, 331 (2001) · Zbl 1035.35031 · doi:10.1017/S0024609301008001
[24] J. Saint Raymond, On the multiplicity of solutions of the equation \(-\Delta u=\lambda f(u),\), J. Differential Equations, 180, 65 (2002) · Zbl 1330.35279 · doi:10.1006/jdeq.2001.4057
[25] M. Schechter, A bounded mountain pass lemma without the (PS) condition and applications,, Trans. Amer. Math. Soc., 331, 681 (1992) · Zbl 0757.35026 · doi:10.1090/S0002-9947-1992-1064270-1
[26] M. Schechter, <em>Linking Methods in Critical Point Theory</em>,, Birkhäuser (1999) · Zbl 0915.35001 · doi:10.1007/978-1-4612-1596-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.