×

Optimal real-time detection of a drifting Brownian coordinate. (English) Zbl 1476.60078

In this paper, the original problem of recognizing the component of a three-dimensional Brownian motion with a (known) non-zero drift coefficient under the assumption that two components have zero drift is analyzed. Based on the position of the Brownian particle observed in real time, the problem is to detect as soon as possible and with minimal probabilities of the wrong terminal decisions, which spatial coordinate has the nonzero drift. The problem is solved in the Bayesian formulation, under any prior probabilities of the nonzero drift being in any of the three spatial coordinates, when the passage of time, is penalized linearly. The main contribution of the article is finding the exact solution to the problem in three dimensions, including a rigorous treatment of its non-monotone optimal stopping boundaries.
Nota bene: The estimation of the drift has been considered by N. Privault and A. Réveillac [Ann. Stat. 36, No. 5, 2531–2550 (2008; Zbl 1274.62256)].

MSC:

60G40 Stopping times; optimal stopping problems; gambling theory
60J65 Brownian motion
60H30 Applications of stochastic analysis (to PDEs, etc.)
35J15 Second-order elliptic equations
45G10 Other nonlinear integral equations
62C10 Bayesian problems; characterization of Bayes procedures

Citations:

Zbl 1274.62256

References:

[1] Bayraktar, E. and Kravitz, R. (2014). Quickest search over Brownian channels. Stochastics 86 473-490. · Zbl 1322.60043 · doi:10.1080/17442508.2013.819874
[2] Borwein, J. M. and Vanderwerff, J. D. (2010). Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedia of Mathematics and Its Applications 109. Cambridge Univ. Press, Cambridge.
[3] Dayanik, S., Poor, H. V. and Sezer, S. O. (2008). Sequential multi-hypothesis testing for compound Poisson processes. Stochastics 80 19-50. · Zbl 1132.62061 · doi:10.1080/17442500701594490
[4] De Angelis, T. and Peskir, G. (2016). Global \(C^1\) regularity of the value function in optimal stopping problems. Ann. Appl. Probab. Research Report No. 13, Probab. Statist. Group Manchester (29 pp.). To appear. · Zbl 1396.60041
[5] du Toit, J. and Peskir, G. (2009). Selling a stock at the ultimate maximum. Ann. Appl. Probab. 19 983-1014. · Zbl 1201.60037 · doi:10.1214/08-AAP566
[6] Feller, W. (1952). The parabolic differential equations and the associated semi-groups of transformations. Ann. of Math. (2) 55 468-519. · Zbl 0047.09303 · doi:10.2307/1969644
[7] Gapeev, P. V. and Peskir, G. (2004). The Wiener sequential testing problem with finite horizon. Stoch. Stoch. Rep. 76 59-75. · Zbl 1054.62087 · doi:10.1080/10451120410001663753
[8] Gapeev, P. V. and Shiryaev, A. N. (2011). On the sequential testing problem for some diffusion processes. Stochastics 83 519-535. · Zbl 1228.62098 · doi:10.1080/17442508.2010.530349
[9] Gilbarg, D. and Trudinger, N. S. (2001). Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin. · Zbl 1042.35002
[10] Johnson, P. and Peskir, G. (2018). Sequential testing problems for Bessel processes. Trans. Amer. Math. Soc. 370 2085-2113. · Zbl 1406.60061 · doi:10.1090/tran/7068
[11] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Graduate Texts in Mathematics 113. Springer, New York. · Zbl 0734.60060
[12] Lai, L., Poor, H. V., Xin, Y. and Georgiadis, G. (2011). Quickest search over multiple sequences. IEEE Trans. Inform. Theory 57 5375-5386. · Zbl 1365.94099 · doi:10.1109/TIT.2011.2159038
[13] Mikhalevich, V. S. (1958). A Bayes test of two hypotheses concerning the mean of a normal process. Visn. Kiiv. Univ. 1 254-264.
[14] Peskir, G. (2005). On the American option problem. Math. Finance 15 169-181. · Zbl 1109.91028 · doi:10.1111/j.0960-1627.2005.00214.x
[15] Peskir, G. (2007). A change-of-variable formula with local time on surfaces. In Séminaire de Probabilités XL. Lecture Notes in Math. 1899 69-96. Springer, Berlin. · Zbl 1141.60035
[16] Peskir, G. (2019). Continuity of the optimal stopping boundary for two-dimensional diffusions. Ann. Appl. Probab. 29 505-530. · Zbl 1409.60066 · doi:10.1214/18-AAP1426
[17] Peskir, G. and Shiryaev, A. (2006). Optimal Stopping and Free-Boundary Problems. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel. · Zbl 1115.60001
[18] Posner, E. C. and Rumsey, H. Jr. (1966). Continuous sequential decision in the presence of a finite number of hypotheses. IEEE Trans. Inform. Theory 12 248-255. · Zbl 0239.62050 · doi:10.1109/TIT.1966.1053868
[19] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Springer, Berlin. · Zbl 0917.60006
[20] Rogers, L. C. G. and Williams, D. (2000). Diffusions, Markov Processes, and Martingales. Vol. 2. Itô Calculus. Cambridge Mathematical Library. Cambridge Univ. Press, Cambridge. · Zbl 0977.60005
[21] Shiryaev, A. N. (1967). Two problems of sequential analysis. Cybernetics 3 63-69 (1969).
[22] Shiryayev, A. N. (1978). Optimal Stopping Rules. Springer, New York. · Zbl 0391.60002
[23] Sobel, M. and Wald, A. (1949). A sequential decision procedure for choosing one of three hypotheses concerning the unknown mean of a normal distribution. Ann. Math. Stat. 20 502-522. · Zbl 0034.23001 · doi:10.1214/aoms/1177729944
[24] Wald, A. (1947). Sequential Analysis. Wiley, New York; CRC Press, London. · Zbl 0041.26303
[25] Zhitlukhin, M. · Zbl 1228.62101 · doi:10.1524/stnd.2011.1109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.