×

Influence of viscosity variation on the stationary Bénard-Marangoni instability with a boundary slab of finite conductivity. (English) Zbl 0936.76020

Summary: We study the onset of stationary Bénard-Marangoni instability in a variable-viscosity fluid layer overlying a boundary slab of finite conductivity. The relations between the viscosity and surface tension of the fluid and the temperature are exponential and linear, respectively. We derive asymptotic solutions for the long wavelength, and for small values of conductivity and thickness of the solid. These solutions compare well with numerical results. As the viscosity ratio increases, the validity of the asymptotic solutions is extended to larger values of thermal conductivity and thickness ratio.

MSC:

76E06 Convection in hydrodynamic stability
76D45 Capillarity (surface tension) for incompressible viscous fluids
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability. Oxford: Oxford University Press 1961. · Zbl 0142.44103
[2] Sparrow, E. M., Goldstein, R. J., Jonsson, V. K.: Thermal instability in a horizontal fluid layer: effect of boundary conditions and non-linear temperature profile. J. Fluid Mech.18, 513-528 (1964). · Zbl 0128.20401 · doi:10.1017/S0022112064000386
[3] Nield, D. A.: The Rayleigh-Jeffreys problem with boundary slab of finite conductivity. J. Fluid Mech.32, 393-398 (1968). · doi:10.1017/S0022112068000790
[4] Catton, I., Lienhard, J. H. V.: Thermal stability of two fluid layers separated by a solid interlayer of finite thickness and thermal conductivity. ASME J. Heat Transfer106, 605-612 (1984). · doi:10.1115/1.3246722
[5] Lienhard, J. H. V.: An improved approach to conductive boundary conditions for the Rayleigh-Bénard instability. ASME J. Heat Transfer109, 378-387 (1987). · doi:10.1115/1.3248091
[6] Yang, H. Q.: Thermal instability and heat transfer in a multi-layer system subjected to uniform heat flux from below. Int. J. Heat Mass Transfer34, 1707-1715 (1991). · doi:10.1016/0017-9310(91)90147-7
[7] Pearson, J. R. A.: On convection cells induced by surface tension. J. Fluid Mech.4, 489-500 (1958). · Zbl 0082.18804 · doi:10.1017/S0022112058000616
[8] Nield, D. A.: Surface tension and buoyancy effects in cellular convection. J. Fluid Mech.19, 341-352 (1964). · Zbl 0123.42204 · doi:10.1017/S0022112064000763
[9] Vidal, A., Acrivos, A.: Nature of the neutral state in surface-tension driven convection. Phys. Fluids9, 615-616 (1966). · doi:10.1063/1.1761716
[10] Takashima, M.: Nature of the neutral state in convective instability induced by surface tension and buoyancy. J. Phys. Soc. Jpn.28, 810 (1970). · doi:10.1143/JPSJ.28.810
[11] Yang, H. Q.: Boundary effect on the Bénard-Marangoni instability. Int. J. Heat Mass Transfer35, 2413-2420 (1992). · doi:10.1016/0017-9310(92)90083-5
[12] Torrance, K. E., Turcotte, D. L.: Thermal convection with large viscosity variations. J. Fluid Mech.47, 113-125 (1971). · doi:10.1017/S002211207100096X
[13] Booker, J. R.: Thermal convection with strongly temperature-dependent viscosity. J. Fluid Mech.76, 741-754 (1976). · doi:10.1017/S0022112076000876
[14] Booker, J. R., Stengel, K. C.: Further thoughts on convective heat transport in a variable-viscosity fluid. J. Fluid Mech.86, 289-291 (1978). · Zbl 0377.76077 · doi:10.1017/S0022112078001135
[15] Richter, F. M.: Experiments on the stability of convection rolls in fluids whose viscosity depends on temperature. J. Fluid Mech.89, 553-560 (1978). · doi:10.1017/S0022112078002736
[16] Stengel, K. C., Oliver, D. S., Booker, J. R.: Onset of convection in a variable-viscosity fluid. J. Fluid Mech.120, 411-431 (1982). · Zbl 0534.76093 · doi:10.1017/S0022112082002821
[17] Richter, F. M., Nataf, H. C., Daly, S. F.: Heat transfer and horizontally averaged temperature of convection with large viscosity variations. J. Fluid Mech.129, 173-192 (1983). · doi:10.1017/S0022112083000713
[18] Pellew, A., Southwell, R. V.: On maintained convective motion in a fluid heated from below. Proc. R. Soc. London Ser.A176, 312-343 (1940). · Zbl 0027.02701 · doi:10.1098/rspa.1940.0092
[19] Nield, D. A.: Onset of convection in a fluid layer overlying a layer of a porous medium. J. Fluid Mech.81, 513-522 (1977). · Zbl 0364.76032 · doi:10.1017/S0022112077002195
[20] Garcia-Ybarra, P. L., Castillo, J. L., Velarde, M. G.: Bénard-Marangoni convection with a deformable interface and poorly conducting boundaries. Phys. Fluids30, 2655-2661 (1987). · Zbl 0634.76050 · doi:10.1063/1.866109
[21] Yang, H. Q., Yang, K. T.: Benard-Marangoni instability in a two-layer system with uniform heat flux. J. Thermophys.4, 73-78 (1990). · doi:10.2514/3.29169
[22] Nield, D. A.: The thermohaline Rayleigh-Jeffreys problem. J. Fluid Mech.29, 545-558 (1967). · doi:10.1017/S0022112067001028
[23] Scriven, L. E., Sternling, C. V.: On cellular convection driven by surface-tension gradients: effects of mean surface tension and surface viscosity. J. Fluid Mech.19, 321-340 (1964). · Zbl 0123.42203 · doi:10.1017/S0022112064000751
[24] Smith, K. A.: On convective instability induced by surface-tension gradients. J. Fluid Mech.24, 401-414 (1966). · doi:10.1017/S0022112066000727
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.