×

On the \(L^q\)-spectrum of planar self-affine measures. (English) Zbl 1342.28014

In this paper, the author studies the dimension theory of a class of planar self-affine multifractal measures. These are the Bernoulli measures supported on box-like self-affine sets. These measures were introduced by the author in previous work, and they are the attractors of iterated systems consisting of contracting affine maps which take the unit square to rectangles with sides parallel to the axes. The \(L^q\)-spectrum of a measure is a quantitative description of the global fluctuations of this measure. Under some technical condition called “the rectangular open set condition”, the author computes the \(L^q\)-spectrum of the measures he studies, by means of a \(q\)-modified singular value function. There are connections between the \(L^q\)-spectrum of a measure and many of its geometric characteristics. They usually are concerning dimension. In the case where there are no mappings that switch the coordinate axes, the author obtains a closed form expression for the \(L^q\)-spectrum. He gives applications to the computation of the Hausdorff, packing and entropy dimensions of the measure, as well as of the Hausdorff and packing dimensions of the support.

MSC:

28A80 Fractals
37C45 Dimension theory of smooth dynamical systems
28A78 Hausdorff and packing measures
15A18 Eigenvalues, singular values, and eigenvectors
26A24 Differentiation (real functions of one variable): general theory, generalized derivatives, mean value theorems

References:

[1] Bara{\'n}ski, Krzysztof, Multifractal analysis on the flexed Sierpi\'nski gasket, Ergodic Theory Dynam. Systems, 25, 3, 731-757 (2005) · Zbl 1090.28005 · doi:10.1017/S0143385704000859
[2] Bara{\'n}ski, Krzysztof, Hausdorff dimension of the limit sets of some planar geometric constructions, Adv. Math., 210, 1, 215-245 (2007) · Zbl 1116.28008 · doi:10.1016/j.aim.2006.06.005
[3] Barral, Julien; Feng, De-Jun, Multifractal formalism for almost all self-affine measures, Comm. Math. Phys., 318, 2, 473-504 (2013) · Zbl 1280.28010 · doi:10.1007/s00220-013-1676-3
[4] [bedford] T. Bedford, Crinkly curves, Markov partitions and box dimensions in self-similar sets, Ph.D dissertation, University of Warwick, 1984.
[5] Falconer, K. J., The Hausdorff dimension of self-affine fractals, Math. Proc. Cambridge Philos. Soc., 103, 2, 339-350 (1988) · Zbl 0642.28005 · doi:10.1017/S0305004100064926
[6] Falconer, K. J., Generalized dimensions of measures on self-affine sets, Nonlinearity, 12, 4, 877-891 (1999) · Zbl 0946.28004 · doi:10.1088/0951-7715/12/4/308
[7] Falconer, Kenneth, Fractal geometry, \textup{Mathematical foundations and applications}, xxviii+337 pp. (2003), John Wiley & Sons, Inc., Hoboken, NJ · Zbl 1060.28005 · doi:10.1002/0470013850
[8] Falconer, Kenneth J., Generalized dimensions of measures on almost self-affine sets, Nonlinearity, 23, 5, 1047-1069 (2010) · Zbl 1196.28015 · doi:10.1088/0951-7715/23/5/002
[9] Falconer, Kenneth; Miao, Jun, Dimensions of self-affine fractals and multifractals generated by upper-triangular matrices, Fractals, 15, 3, 289-299 (2007) · Zbl 1137.28302 · doi:10.1142/S0218348X07003587
[10] Fan, Ai-Hua; Lau, Ka-Sing; Rao, Hui, Relationships between different dimensions of a measure, Monatsh. Math., 135, 3, 191-201 (2002) · Zbl 0996.28001 · doi:10.1007/s006050200016
[11] Feng, De-Jun, Smoothness of the \(L^q\)-spectrum of self-similar measures with overlaps, J. London Math. Soc. (2), 68, 1, 102-118 (2003) · Zbl 1041.28004 · doi:10.1112/S002461070300437X
[12] Feng, De-Jun; Wang, Yang, A class of self-affine sets and self-affine measures, J. Fourier Anal. Appl., 11, 1, 107-124 (2005) · Zbl 1091.28005 · doi:10.1007/s00041-004-4031-4
[13] Ferguson, Andrew; Jordan, Thomas; Shmerkin, Pablo, The Hausdorff dimension of the projections of self-affine carpets, Fund. Math., 209, 3, 193-213 (2010) · Zbl 1206.28011 · doi:10.4064/fm209-3-1
[14] Fraser, Jonathan M., On the packing dimension of box-like self-affine sets in the plane, Nonlinearity, 25, 7, 2075-2092 (2012) · Zbl 1247.28006 · doi:10.1088/0951-7715/25/7/2075
[15] Fraser, J. M.; Olsen, L., Multifractal spectra of random self-affine multifractal Sierpinski sponges in \(\mathbb{R}^d\), Indiana Univ. Math. J., 60, 3, 937-983 (2011) · Zbl 1251.28004 · doi:10.1512/iumj.2011.60.4343
[16] Lalley, Steven P.; Gatzouras, Dimitrios, Hausdorff and box dimensions of certain self-affine fractals, Indiana Univ. Math. J., 41, 2, 533-568 (1992) · Zbl 0757.28011 · doi:10.1512/iumj.1992.41.41031
[17] Jordan, Thomas; Rams, Michal, Multifractal analysis for Bedford-McMullen carpets, Math. Proc. Cambridge Philos. Soc., 150, 1, 147-156 (2011) · Zbl 1206.28012 · doi:10.1017/S0305004110000472
[18] Kenyon, R.; Peres, Y., Measures of full dimension on affine-invariant sets, Ergodic Theory Dynam. Systems, 16, 2, 307-323 (1996) · Zbl 0851.58028 · doi:10.1017/S0143385700008828
[19] Kenyon, R.; Peres, Y., Hausdorff dimensions of sofic affine-invariant sets, Israel J. Math., 94, 157-178 (1996) · Zbl 1075.37503 · doi:10.1007/BF02762702
[20] King, James F., The singularity spectrum for general Sierpi\'nski carpets, Adv. Math., 116, 1, 1-11 (1995) · Zbl 0845.28007 · doi:10.1006/aima.1995.1061
[21] Lau, Ka-Sing, Self-similarity, \(L^p\)-spectrum and multifractal formalism. Fractal geometry and stochastics, Finsterbergen, 1994, Progr. Probab. 37, 55-90 (1995), Birkh\"auser, Basel · Zbl 0837.28008
[22] Mauldin, R. Daniel; Williams, S. C., Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc., 309, 2, 811-829 (1988) · Zbl 0706.28007 · doi:10.2307/2000940
[23] McMullen, Curt, The Hausdorff dimension of general Sierpi\'nski carpets, Nagoya Math. J., 96, 1-9 (1984) · Zbl 0539.28003
[24] Ngai, Sze-Man, A dimension result arising from the \(L^q\)-spectrum of a measure, Proc. Amer. Math. Soc., 125, 10, 2943-2951 (1997) · Zbl 0886.28006 · doi:10.1090/S0002-9939-97-03974-9
[25] Ni, Tian-Jia; Wen, Zhi-Ying, The \(L^q\)-spectrum of a class of graph directed self-affine measures, Dyn. Syst., 24, 4, 517-536 (2009) · Zbl 1180.28004 · doi:10.1080/14689360903143722
[26] Olsen, Lars, Random geometrically graph directed self-similar multifractals, Pitman Research Notes in Mathematics Series 307, xvi+245 pp. (1994), Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York · Zbl 0801.28002 · doi:10.2307/4351476
[27] Olsen, L., A multifractal formalism, Adv. Math., 116, 1, 82-196 (1995) · Zbl 0841.28012 · doi:10.1006/aima.1995.1066
[28] Olsen, L., Self-affine multifractal Sierpinski sponges in \(\mathbf{R}^d\), Pacific J. Math., 183, 1, 143-199 (1998) · Zbl 0955.28004 · doi:10.2140/pjm.1998.183.143
[29] Olsen, L., Multifractal geometry. Fractal geometry and stochastics, II, Greifswald/Koserow, 1998, Progr. Probab. 46, 3-37 (2000), Birkh\"auser, Basel · Zbl 0981.28002
[30] Olsen, Lars, Random self-affine multifractal Sierpinski sponges in \(\mathbb{R}^d\), Monatsh. Math., 162, 1, 89-117 (2011) · Zbl 1215.28009 · doi:10.1007/s00605-009-0160-9
[31] Peres, Yuval; Solomyak, Boris, Existence of \(L^q\) dimensions and entropy dimension for self-conformal measures, Indiana Univ. Math. J., 49, 4, 1603-1621 (2000) · Zbl 0978.28004 · doi:10.1512/iumj.2000.49.1851
[32] Reeve, Henry W. J., The packing spectrum for Birkhoff averages on a self-affine repeller, Ergodic Theory Dynam. Systems, 32, 4, 1444-1470 (2012) · Zbl 1286.28006 · doi:10.1017/S0143385711000368
[33] R{\'e}nyi, Alfr{\'e}d, Dimension, entropy and information. Trans. 2nd Prague Conf. Information Theory, 545-556 (1960), Publ. House Czechoslovak Acad. Sci., Prague, 1960; Academic Press, New York · Zbl 0115.35502
[34] R{\'e}nyi, A., Probability theory, Translated by L\'aszl\'o Vekerdi; North-Holland Series in Applied Mathematics and Mechanics, Vol. 10, iii+666 pp. (1970), North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York · Zbl 0206.18002
[35] Riedi, Rolf, An improved multifractal formalism and self-similar measures, J. Math. Anal. Appl., 189, 2, 462-490 (1995) · Zbl 0819.28008 · doi:10.1006/jmaa.1995.1030
[36] Strichartz, Robert S., Self-similar measures and their Fourier transforms. III, Indiana Univ. Math. J., 42, 2, 367-411 (1993) · Zbl 0790.28003 · doi:10.1512/iumj.1993.42.42018
[37] Young, Lai Sang, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynamical Systems, 2, 1, 109-124 (1982) · Zbl 0523.58024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.