×

Ikeda’s conjecture on the period of the Duke-Imamoḡlu-Ikeda lift. (English) Zbl 1376.11038

Summary: Let \(k\) and \(n\) be positive even integers. For a cuspidal Hecke eigenform \(h\) in the Kohnen plus space of weight \(k-n/2+1/2\) for \(\varGamma_0(4),\) let \(I_n(h)\) be the Duke-Imamoḡlu-Ikeda lift of \(h\) in the space of cusp forms of weight \(k\) for \(\mathrm{Sp}_n(\mathbb{Z}),\) and \(f\) be the primitive form of weight \(2k-n\) for \(\mathrm{SL}_2(\mathbb{Z})\) corresponding to \(h\) under the Shimura correspondence. We then express the ratio \(\langle I_n(h), I_n(h) \rangle / \langle h, h \rangle\) of the period of \(I_n(h)\) to that of \(h\) in terms of special values of certain \(L\)-functions of \(f\). This proves the conjecture proposed by Ikeda concerning the period of the Duke-Imamoḡlu-Ikeda lift.

MSC:

11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F46 Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms
11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations

References:

[1] A. N.Andrianov, Quadratic forms and Hecke operators, Grundlehren der Mathematischen Wissenschaften 286 (Springer, Berlin, 1987). · Zbl 0613.10023
[2] S.Böcherer, ‘Eine Rationalitätsatz für formale Heckereihen zur Siegelschen Modulgruppe’, Abh. Math. Sem. Univ. Hamburg, 56 (1986) 35-47. · Zbl 0613.10026
[3] S.Böcherer, N.Dummigan, R.Schulze‐Pillot, ‘Yoshida lifts and Selmer groups’, J. Math. Soc. Japan, 64 (2012) 1353-1405. · Zbl 1276.11069
[4] S.Böcherer, F.Sato, ‘Rationality of certain formal power series related to local densities’, Comment. Math. Univ. St. Paul., 36 (1987) 53-86. · Zbl 0629.10018
[5] J.Brown, ‘Saito-Kurokawa lifts and applications to the Bloch-Kato conjecture’, Compos. Math., 143 (2007) 290-322. · Zbl 1172.11015
[6] Y.Choie, W.Kohnen, ‘On the Petersson norm of certain Siegel modular forms’, Ramanujan J., 7 (2003) 45-48. · Zbl 1047.11038
[7] K.Doi, H.Hida, H.Ishii, ‘Discriminant of Hecke fields and twisted adjoint L‐values for GL(2)’, Invent. Math., 134 (1998) 547-577. · Zbl 0924.11035
[8] M.Furusawa, ‘On Petersson norms for some liftings’, Math. Ann., 248 (1984) 543-548. · Zbl 0519.10020
[9] T.Ibukiyama, ‘On Jacobi forms and Siegel modular forms of half integral weights’, Comment. Math. Univ. St.Paul., 41 (1992) 109-124. · Zbl 0787.11015
[10] T.Ibukiyama, H.Katsurada, ‘An explicit formula for Koecher-Maaß Dirichlet series for Eisenstein series of Klingen type’, J. Number Theory, 102 (2003) 223-256. · Zbl 1053.11046
[11] T.Ibukiyama, H.Katsurada, ‘An explicit formula for Koecher-Maaß Dirichlet series for the Ikeda lifting’, Abh. Math. Sem. Hamburg, 74 (2004) 101-121. · Zbl 1073.11031
[12] T.Ibukiyama, H.Katsurada, ‘Koecher-Maaß series for real analytic Siegel Eisenstein series’, Automorphic forms and zeta functions (World Scientific Publishing, Hackensack, NJ, 2006) 170-197. · Zbl 1112.11021
[13] T.Ibukiyama, H.Saito, ‘On zeta functions associated to symmetric matrices. I. An explicit form of zeta functions’, Amer. J. Math., 117 (1995) 1097-1155. · Zbl 0846.11028
[14] T.Ikeda, ‘On the lifting of elliptic modular forms to Siegel cusp forms of degree \(2 n\)’, Ann. of Math., 154 (2001) 641-681. · Zbl 0998.11023
[15] T.Ikeda, ‘Pullback of the lifting of elliptic cusp forms and Miyawaki’s conjecture’, Duke Math. J., 131 (2006) 469-497. · Zbl 1112.11022
[16] T.Ikeda, ‘On the lifting of hermitian modular forms’, Compos. Math., 144 (2008) 1107-1154. · Zbl 1155.11025
[17] V. L.Kalinin, ‘Analytic properties of the convolution products of genus \(g\)’, Math. USSR Sb., 48 (1984) 193-200. · Zbl 0542.10020
[18] H.Katsurada, ‘An explicit formula for Siegel series’, Amer. J. Math., 121 (1999) 415-452. · Zbl 1002.11039
[19] H.Katsurada, ‘Congruence of Siegel modular forms and special values of their standard zeta functions’, Math. Z., 259 (2008) 97-111. · Zbl 1173.11029
[20] H.Katsurada, ‘Exact standard zeta values of Siegel modular forms’, Experiment. Math., 19 (2010) 65-76. · Zbl 1206.11064
[21] H.Katsurada, ‘Congruence between Duke-Imamo \(\overline{\text{g}}\) lu-Ikeda lifts and non‐Duke-Imamo \(\overline{\text{g}}\) lu-Ikeda lifts’, Preprint, 2011, arXiv:1101.3377v1 [math.NT].
[22] H.Katsurada, ‘Explicit formulas for the twisted Koecher-Maass series of the Duke-Imamoglu-Ikeda lift and their applications’, Math. Z., 276 (2014) 1049-1075. · Zbl 1304.11036
[23] H.Katsurada, H.Kawamura, ‘A certain Dirichlet series of Rankin-Selberg type associated with the Ikeda lifting’, J. Number Theory, 128 (2008) 2025-2052. · Zbl 1221.11123
[24] H.Katsurada, H.Kawamura, ‘On the Andrianov‐type identity for power series attached to Jacobi forms and its applications’, Acta Arith., 145 (2010) 233-265. · Zbl 1214.11060
[25] H.Katsurada, H.Kawamura, ‘Koecher-Maaß series of a certain half‐integral weight modular form related to the Duke-Imamo \(\overline{\text{g}}\) lu-Ikeda lift’, Acta Arith., 162 (2014) 1-42. · Zbl 1322.11041
[26] Y.Kitaoka, ‘Dirichlet series in the theory of Siegel modular forms’, Nagoya Math. J., 95 (1984) 73-84. · Zbl 0551.10025
[27] Y.Kitaoka, Arithmetic of quadratic forms, Cambridge Tracts in Mathematics 106 (Cambridge University Press, Cambridge, 1993). · Zbl 0785.11021
[28] W.Kohnen, ‘Modular forms of half‐integral weight on \(\Gamma_0 ( 4 )\)’, Math. Ann., 248 (1980) 249-266. · Zbl 0416.10023
[29] W.Kohnen, N.‐P.Skoruppa, ‘A certain Dirichlet series attached to Siegel modular forms of degree 2’, Invent. Math., 95 (1989) 541-558. · Zbl 0665.10019
[30] W.Kohnen, D.Zagier, ‘Values of \(L\)‐series of modular forms at the center of the critical strip’, Invent. Math., 64 (1981) 175-198. · Zbl 0468.10015
[31] A.Krieg, ‘A Dirichlet series for modular forms of degree \(n\)’, Acta Arith., 59 (1991) 243-259. · Zbl 0707.11037
[32] A.Murase, T.Sugano, ‘Inner product formula for Kudla lift’, Automorphic forms and zeta functions (World Scientific Publishing, Hackensack, NJ, 2006) 280-313. · Zbl 1103.11016
[33] T.Oda, ‘On the poles of Andrianov \(L\)‐functions’, Math. Ann., 256 (1981) 323-340. · Zbl 0465.10021
[34] S.Rallis, \(L\)‐functions and oscillator representation, Lecture Notes in Mathematics 1245 (Springer, Berlin, 1987). · Zbl 0605.10016
[35] R.Schulze‐Pillot, ‘Local theta correspondence and the theta lifting of Duke-Imamoglu and Ikeda’, Osaka J. Math., 45 (2008) 965-971. · Zbl 1193.11043
[36] G.Shimura, ‘The special values of the zeta functions associated with cusp forms’, Comm. Pure Appl. Math., 29 (1976) 783-804. · Zbl 0348.10015
[37] G.Shimura, Arithmeticity in the theory of automorphic forms, Mathematical Surveys and Monographs 82 (American Mathematical Society, Providence, RI, 2000). · Zbl 0967.11001
[38] T.Yamazaki, ‘Rankin-Selberg method for Siegel cusp forms’, Nagoya Math. J., 120 (1990) 35-49. · Zbl 0715.11025
[39] D.Zagier, ‘Modular forms whose Fourier coefficients involve zeta functions of quadratic fields’, Modular functions of one variable, VI (Proc. Second Internat. Conf. Univ. Bonn, Bonn, 1976), Lecture Notes in Mathematics 627 (Springer, Berlin, 1977) 105-169. · Zbl 0372.10017
[40] V. G.Zhuravlëv, ‘Euler expansions of theta‐transformations of Siegel modular forms of half integer weight and their analytic properties’, Math. USSR Sb., 51 (1985) 169-190. · Zbl 0571.10029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.