×

On special values of standard \(L\)-functions of Siegel cusp eigenforms of genus 3. (English. French summary) Zbl 1380.11058

Summary: We explicitly compute the special values of the standard \(L\)-function \(L(s,F_{12},\mathrm{St})\) at the critical points \(s\in\{-8,-6,-4,-2,0,1,3,5,7,9\}\), where \(F_{12}\) is the unique (up to a scalar) Siegel cusp form of degree 3 and weight 12, which was constructed by I. Miyawaki [Mem. Fac. Sci., Kyushu Univ., Ser. A 46, No. 2, 307–339 (1992; Zbl 0780.11022)]. These values are proportional to the product of the Petersson norms of symmetric square of Ramanujan’s \(\Delta\) and the cusp form of weight 20 for \(\mathrm{SL}_2(\mathbb{Z})\) by a rational number and some power of \(\pi\). We use the Rankin-Selberg method and apply the Holomorphic projection to compute these values. To our knowledge this is the first example of a standard \(L\)-function of Siegel cusp form of degree 3, when the special values can be computed explicitly.

MSC:

11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F46 Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms

Citations:

Zbl 0780.11022

References:

[1] S. Böcherer, « Über die Funktionalgleichung automorpher \(L\)-Funktionen zur Siegelschen Modulgruppe », J. Reine Angew. Math.362 (1985), p. 146-168. · Zbl 0565.10025
[2] F. Chiera & K. Vankov, « On special values of spinor L-functions of Siegel cusp eigenforms of genus 3 », , 2008.
[3] M. Courtieu & A. Panchishkin, Non-Archimedean \(L\)-functions and arithmetical Siegel modular forms, second ed., Lecture Notes in Mathematics, vol. 1471, Springer-Verlag, Berlin, 2004, viii+196 pages. · Zbl 1070.11023
[4] P. Deligne, « Valeurs de fonctions \(L\) et périodes d’intégrales », in Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, With an appendix by N. Koblitz and A. Ogus, p. 313-346. · Zbl 0449.10022
[5] A. T. Do & K. Vankov, « Supplementary materials for the present article », .
[6] B. H. Gross & D. B. Zagier, « Heegner points and derivatives of \(L\)-series », Invent. Math.84 (1986), no. 2, p. 225-320. · Zbl 0608.14019
[7] T. Ikeda, « Pullback of the lifting of elliptic cusp forms and Miyawaki’s conjecture », Duke Math. J.131 (2006), no. 3, p. 469-497. · Zbl 1112.11022
[8] W. C. W. Li, « \(L\)-series of Rankin type and their functional equations », Math. Ann.244 (1979), no. 2, p. 135-166. · Zbl 0396.10017
[9] T. Miyake, Modular forms, english ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006, Translated from the 1976 Japanese original by Yoshitaka Maeda, x+335 pages. · Zbl 1159.11014
[10] I. Miyawaki, « Numerical examples of Siegel cusp forms of degree \(3\) and their zeta-functions », Mem. Fac. Sci. Kyushu Univ. Ser. A46 (1992), no. 2, p. 307-339. · Zbl 0780.11022
[11] A. A. Panchishkin, « Two variable \(p\)-adic \(L\) functions attached to eigenfamilies of positive slope », Invent. Math.154 (2003), no. 3, p. 551-615. · Zbl 1065.11025
[12] R. A. Rankin, « Contributions to the theory of Ramanujan’s function \(\tau (n)\) and similar arithmetical functions. I. The zeros of the function \(\sum^\infty_{n=1}\tau (n)/n^s\) on the line \(\mathfrak{R}s=13/2\). II. The order of the Fourier coefficients of integral modular forms », Proc. Cambridge Philos. Soc.35 (1939), p. 351-372. · JFM 65.0353.01
[13] J.-P. Serre, « Formes modulaires et fonctions zêta \(p\)-adiques », in Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), Springer, Berlin, 1973, p. 191-268. Lecture Notes in Math., Vol. 350. · Zbl 0277.12014
[14] G. Shimura, « The special values of the zeta functions associated with cusp forms », Comm. Pure Appl. Math.29 (1976), no. 6, p. 783-804. · Zbl 0348.10015
[15] —, Elementary Dirichlet series and modular forms, Springer Monographs in Mathematics, Springer, New York, 2007, viii+147 pages. · Zbl 1148.11002
[16] J. Sturm, « Projections of \(C^{\infty }\) automorphic forms », Bull. Amer. Math. Soc. (N.S.)2 (1980), no. 3, p. 435-439. · Zbl 0433.10013
[17] D. Zagier, « Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields », in Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Springer, Berlin, 1977, p. 105-169. Lecture Notes in Math., Vol. 627. · Zbl 0372.10017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.