×

Special values of the Riemann zeta function capture all real numbers. (English) Zbl 1327.11058

The author investigates the set of odd values of the Riemann zeta-function \(\zeta(s)=\sum_{n=1}^{\infty}1/n^s\), \(s=\sigma+it\), \(\sigma>1\). It is shown that all real numbers can be strongly approximated using certain linear combinations of odd values of the function \(\zeta(s)\). More precisely: for any given integer \(n \geq 3\), there exists an integer \(r \leq n\), \(n,r \to \infty\), a sequence of rational polynomials \(s_r(x)=a_rx^r+...+a_1x+a_0\) converging in \({\mathcal C}^\infty[0,2\pi]\) under the supremum metric with coefficients depending on \(\alpha,n,q\), and satisfying the estimate \[ \bigg|\alpha+\sum_{k=1}^{[r/2]}c_k\zeta(2k+1)\bigg| \ll_{\alpha,q}\frac{1}{n^q} \] with real \(\alpha\), positive integer \(q\), and \[ c_k:=\sum_{m=2k}^{r}(-1)^k \frac{m! (2\pi)^{m-2k+1}a_m}{(m-2k+1)!} \not =0 \] for all \(1 \leq k \leq [r/2]\).

MSC:

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
41A50 Best approximation, Chebyshev systems
42A16 Fourier coefficients, Fourier series of functions with special properties, special Fourier series
Full Text: DOI

References:

[1] Alkan, Emre, On Dirichlet \(L\)-functions with periodic coefficients and Eisenstein series, Monatsh. Math., 163, 3, 249-280 (2011) · Zbl 1278.11081 · doi:10.1007/s00605-010-0211-2
[2] Alkan, Emre, On the mean square average of special values of \(L\)-functions, J. Number Theory, 131, 8, 1470-1485 (2011) · Zbl 1237.11037 · doi:10.1016/j.jnt.2011.02.013
[3] Alkan, Emre, Values of Dirichlet \(L\)-functions, Gauss sums and trigonometric sums, Ramanujan J., 26, 3, 375-398 (2011) · Zbl 1287.11101 · doi:10.1007/s11139-010-9292-8
[4] Alkan, Emre, On linear combinations of special values of \(L\)-functions, Manuscripta Math., 139, 3-4, 473-494 (2012) · Zbl 1281.11082 · doi:10.1007/s00229-011-0526-x
[5] Alkan, Emre, Averages of values of \(L\)-series, Proc. Amer. Math. Soc., 141, 4, 1161-1175 (2013) · Zbl 1331.11066 · doi:10.1090/S0002-9939-2012-11506-0
[6] Alkan, Emre, Series representations in the spirit of Ramanujan, J. Math. Anal. Appl., 410, 1, 11-26 (2014) · Zbl 1309.33023 · doi:10.1016/j.jmaa.2013.08.021
[7] Alkan, Emre, Approximation by special values of harmonic zeta function and log-sine integrals, Commun. Number Theory Phys., 7, 3, 515-550 (2013) · Zbl 1312.11070 · doi:10.4310/CNTP.2013.v7.n3.a5
[8] [A7] E. Alkan, Series representing transcendental numbers that are not \(U\)-numbers, Int. J. Number Theory, to appear. doi: 10.1142/S1793042115500487 · Zbl 1328.11079
[9] Andrews, George E.; Jim{\'e}nez-Urroz, Jorge; Ono, Ken, \(q\)-series identities and values of certain \(L\)-functions, Duke Math. J., 108, 3, 395-419 (2001) · Zbl 1005.11048 · doi:10.1215/S0012-7094-01-10831-4
[10] Batir, Necdet, Integral representations of some series involving \({2k\choose k}^{-1}k^{-n}\) and some related series, Appl. Math. Comput., 147, 3, 645-667 (2004) · Zbl 1068.33003 · doi:10.1016/S0096-3003(02)00802-0
[11] Batir, Necdet, On the series \(\sum^\infty_{k=1}{3k\choose k}^{-1}k^{-n}x^k\), Proc. Indian Acad. Sci. Math. Sci., 115, 4, 371-381 (2005) · Zbl 1084.11007 · doi:10.1007/BF02829799
[12] Berndt, Bruce C., Modular transformations and generalizations of several formulae of Ramanujan, Rocky Mountain J. Math., 7, 1, 147-189 (1977) · Zbl 0365.10021
[13] Berndt, Bruce C., Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan, J. Reine Angew. Math., 303/304, 332-365 (1978) · Zbl 0384.10011 · doi:10.1515/crll.1978.303-304.332
[14] Berndt, Bruce C., Ramanujan’s notebooks. Part I, x+357 pp. (1985), Springer-Verlag, New York · Zbl 0555.10001 · doi:10.1007/978-1-4612-1088-7
[15] Berndt, Bruce C., Ramanujan’s notebooks. Part II, xii+359 pp. (1989), Springer-Verlag, New York · Zbl 0716.11001 · doi:10.1007/978-1-4612-4530-8
[16] [B] H. Bohr, \`“Uber Diophantische Approximationen und ihre Anwendungen auf Dirichlet”sche Reihen, besonders auf die Riemann’sche Zetafunktion, 5. Skand. Mat. Kongr. Helsingfors (1922), 131-154.
[17] [BC] H. Bohr, R. Courant, Neue Anwendungen der Theorie der Diophantischen Approximationen auf die Riemannsche Zetafunktion, J. Reine Angew. Math. 144 (1914), 249-274. · JFM 45.0718.02
[18] Coogan, Gwynneth H.; Ono, Ken, A \(q\)-series identity and the arithmetic of Hurwitz zeta functions, Proc. Amer. Math. Soc., 131, 3, 719-724 (electronic) (2003) · Zbl 1082.11011 · doi:10.1090/S0002-9939-02-06649-2
[19] Davidson, Kenneth R.; Donsig, Allan P., Real analysis and applications, Undergraduate Texts in Mathematics, xii+513 pp. (2010), Springer, New York · Zbl 1179.26001 · doi:10.1007/978-0-387-98098-0
[20] [Gri] D. J. Griffiths, Introduction to Quantum Mechanics, Second Edition, Pearson, Prentice Hall, 2005.
[21] Jackson, Dunham, The theory of approximation, American Mathematical Society Colloquium Publications 11, viii+178 pp. (1994), American Mathematical Society, Providence, RI
[22] Kanemitsu, Shigeru; Kumagai, Hiroshi; Yoshimoto, Masami, On rapidly convergent series expressions for zeta- and \(L\)-values, and log sine integrals, Ramanujan J., 5, 1, 91-104 (2001) · Zbl 0986.11057 · doi:10.1023/A:1011449413387
[23] Karatsuba, A. A.; Voronin, S. M., The Riemann zeta-function, de Gruyter Expositions in Mathematics 5, xii+396 pp. (1992), Walter de Gruyter & Co., Berlin · Zbl 0756.11022 · doi:10.1515/9783110886146
[24] [Mah] K. Mahler, Zur Approximation der Exponentialfunktionen und des Logarithmus, I, II, J. Reine Angew. Math. 166 (1932), 118-150. · JFM 58.0207.01
[25] Mez{\H{o}}, Istv{\'a}n; Dil, Ayhan, Hyperharmonic series involving Hurwitz zeta function, J. Number Theory, 130, 2, 360-369 (2010) · Zbl 1225.11032 · doi:10.1016/j.jnt.2009.08.005
[26] [Ram1] S. Ramanujan, On the integral \(\smallint_0^x\frac\tan^-1tt\ dt\), J. Indian Math. Soc. 7 (1915), 93-96.
[27] Vep{\v{s}}tas, Linas, On Plouffe’s Ramanujan identities, Ramanujan J., 27, 3, 387-408 (2012) · Zbl 1271.11086 · doi:10.1007/s11139-011-9335-9
[28] Zaharescu, Alexandru; Zaki, Mohammad, An algebraic independence result for Euler products of finite degree, Proc. Amer. Math. Soc., 137, 4, 1275-1283 (2009) · Zbl 1245.11085 · doi:10.1090/S0002-9939-08-09622-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.