×

Class group \(L\)-functions. (English) Zbl 0838.11058

Let \(K = \mathbb{Q}(\sqrt{-D})\) be an imaginary quadratic field with class number \(h\), and let \(\chi\) be any one of the \(h\) characters of the class group of \(K\). Then the class group \(L\)-functions \(L_K (s,\chi)\) are defined as natural generalizations of the Dedekind zeta-function. The authors consider various mean values of these \(L\)-functions on the critical line, but their ultimate goal is estimating a single \(L\)-function in the \(D\)-aspect. A “trivial” estimate is \(\ll D^{1/4} \log^2D\) for fixed \(s = 1/2 + it\) (the implied constant may depend on \(s)\); this follows from the functional equation by the convexity principle. If \(\chi\) is a real character, then \(L_K(s,\chi)\) is a product of two Dirichlet \(L\)-functions, for which well known bounds of Burgess are available. However, the case of complex characters is much more problematic.
The average of \(L_K (s,\chi)\) over \(\chi\) reduces to Riemann’s zeta-function very precisely. A deeper problem is the mean square, and here a saving by \(D^{-1/28+\varepsilon}\) in the error term is obtained. However, this does not imply any nontrivial estimate for a single \(L\)-function. For this purpose, an “amplifier” is attached to the terms of the mean-square; it is a factor which emphasizes the function to be estimated. This idea has been applied by the authors previously to character sums and automorphic \(L\)-functions. The result is \(L_K (s,\chi) \ll D^{1/4-\alpha+\varepsilon}\) with \(\alpha = 1/1156\), but this bound is conditional: three alternative sufficient conditions are given in terms of the class number \(h\), the nontriviality of short field character sums, or the existence of sufficiently many small primes with \(({- D \over p}) = 1\). For instance, the last mentioned property fails for at most finitely many \(D\) in intervals of the type \((X, X^2)\). Also, the estimate holds unconditionally if all the prime factors of \(D\) are bounded by \(D^{\alpha^2}\). The proof is complicated and ingenious; the mean values under consideration are reduced to sums involving automorphic functions at Heegner points, and the spectral theory is used to analyze such sums.
Reviewer: M.Jutila (Turku)

MSC:

11M41 Other Dirichlet series and zeta functions
11R42 Zeta functions and \(L\)-functions of number fields
11R29 Class numbers, class groups, discriminants
11F72 Spectral theory; trace formulas (e.g., that of Selberg)
Full Text: DOI

References:

[1] A. Baker and A. Schinzel, On the least integers represented by the genera of binary quadratic forms , Acta Arith. 18 (1971), 137-144. · Zbl 0218.10040
[2] D. A. Burgess, On character sums and primitive roots , Proc. London Math. Soc. (3) 12 (1962), 179-192. · Zbl 0106.04003 · doi:10.1112/plms/s3-12.1.179
[3] D. Buell, Class groups of quadratic fields , Math. Comp. 30 (1976), no. 135, 610-623. JSTOR: · Zbl 0334.12003 · doi:10.2307/2005330
[4] J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms , Invent. Math. 70 (1982), no. 2, 219-288. · Zbl 0502.10021 · doi:10.1007/BF01390728
[5] W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms , Invent. Math. 92 (1988), no. 1, 73-90. · Zbl 0628.10029 · doi:10.1007/BF01393993
[6] W. Duke, J. Friedlander, and H. Iwaniec, Bounds for automorphic \(L\)-functions , Invent. Math. 112 (1993), no. 1, 1-8. · Zbl 0765.11038 · doi:10.1007/BF01232422
[7] W. Duke, J. Friedlander, and H. Iwaniec, Bounds for automorphic \(L\)-functions II , Invent. Math. 115 (1994), no. 2, 219-239. · Zbl 0812.11032 · doi:10.1007/BF01231759
[8] J. Friedlander and H. Iwaniec, A mean-value theorem for character sums , Michigan Math. J. 39 (1992), no. 1, 153-159. · Zbl 0765.11037 · doi:10.1307/mmj/1029004462
[9] C. F. Gauss, Disquisitiones Arithmeticae , Springer-Verlag, New York, 1986, English Edition. · Zbl 0585.10001
[10] III, F. Gerth, Extension of conjectures of Cohen and Lenstra , Exposition. Math. 5 (1987), no. 2, 181-184. · Zbl 0613.12003
[11] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products , Academic Press, Orlando, 1980. · Zbl 0521.33001
[12] S. W. Graham and C. J. Ringrose, Lower bounds for least quadratic non-residues , Analytic Number Theory (Allerton Park, IL, 1989), Progr. Math., vol. 85, Birkhäuser, Boston, 1990, pp. 269-309. · Zbl 0719.11006
[13] H. Halberstam and H.-E. Richert, Sieve Methods , Academic Press, London, 1974. · Zbl 0298.10026
[14] D. R. Heath-Brown, On a paper: “On the least integers represented by the genera of binary quadratic forms” , Acta Arith. 35 (1979), no. 2, 203-207. · Zbl 0341.10021
[15] H. Hecke, Eine neue Art von Zetafunktionen und ihre Benziehungen zur Verteilung der Primzahlen I , Math. Z. 1 (1918), 357-376. · JFM 46.0258.01
[16] H. Iwaniec, Introduction to the spectral theory of automorphic forms , Rev. Mat. Iberoamericana, · Zbl 0847.11028
[17] H. Iwaniec and P. Sarnak, \(L^\infty\)-norms of eigenfunctions of arithmetic surfaces , Ann. of Math.(2), to appear. JSTOR: · Zbl 0833.11019 · doi:10.2307/2118522
[18] S. Katok and P. Sarnak, Heegner points, cycles and Maass forms , Israel J. Math. 84 (1993), no. 1-2, 193-227. · Zbl 0787.11016 · doi:10.1007/BF02761700
[19] H. Maass, Über die räumliche Verteilung der Punkte in Gittern mit indefiniter Metrik , Math. Ann. 138 (1959), 287-315. · Zbl 0089.06102 · doi:10.1007/BF01344150
[20] W. Magnus and F. Oberhettinger, Formulas and Theorems for the Special Functions of Mathematical Physics , Chelsea, New York, 1949. · Zbl 0039.07202
[21] J.-P. Serre, Modular forms of weight one and Galois representations , Algebraic Number Fields: \(L\)-functions and Galois Properties (Proc. Sympos., Univ. Durham, Durham, 1975) ed. A. Frölich, Academic Press, London, 1977, pp. 193-268. · Zbl 0366.10022
[22] C. L. Siegel, Über die Classenzahl quadratischer Zahlkörper , Acta Arith. 1 (1935), 83-86. · Zbl 0011.00903
[23] C. L. Siegel, Lectures on Advanced Analytic Number Theory , Notes by S. Raghavan. Tata Institute of Fundamental Research Lectures on Mathematics, No. 23, Tata Institute, Bombay, 1965. · Zbl 0278.10001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.