×

Maaßsche L-Reihen und eine Identität für Gaußsche Summen. (German) Zbl 0556.10021

Let \(\chi\) be a character mod q, and form the Gaussian sum \[ G(m,\chi)=q^{-m^ 2/2}\sum_{D mod q}\chi (Det D) \exp (\frac{2\pi i}{q}Tr(D)), \] where m is an element of \({\mathbb{N}}\), the set of positive rational integers, D runs over all integral \(m\times m\) matrices mod q, and Tr(D) is the trace of D.
In his book [Selberg’s Zeta-, L-, and Eisenstein-series (Lect. Notes Math. 1030) (1983; Zbl 0519.10018)], the author proved Theorem 71: Let \(m\in {\mathbb{N}}\) and \(\chi\) be an even primitive character mod q. Then \(G(m,\chi)=(G(1,\chi))^ m.\) And he conjectured that the theorem would be valid for odd primitive characters.
In the present paper, he proves that (i) the above conjecture is true, and (ii) a generalization of Maass’ zeta-function, which is called Maass’ L-series in this paper, that is \[ \zeta (\chi,u,v,S,z)=\sum_{G}\frac{\chi (Det G_ 1) u(SG) w(G'S'SG)}{Det(G'S'SG)^ z},\quad G=\left( \begin{matrix} G_ 1\\ G_ 2\end{matrix} \right), \] can, for a primitive character \(\chi\), be analytically continued to the whole z-plane and satisfies a functional equation. For the notations not explained here, one may refer to the above Lecture Note or the original paper.
Reviewer: M.Ozeki

MSC:

11F27 Theta series; Weil representation; theta correspondences
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11L10 Jacobsthal and Brewer sums; other complete character sums
30B40 Analytic continuation of functions of one complex variable

Citations:

Zbl 0519.10018
Full Text: DOI

References:

[1] U. Christian, Siegelsche Modulfunktionen. Vorlesungsausarbeitung, 2. Auflage, Göttingen 1980/81.
[2] U. Christian, Eisenstein series for congruence subgroups ofGL(n, \(\mathbb{Z}\)). Amer. J. Math.
[3] U. Christian, Selberg’s Zeta-,L-, and Eisensteinseries. Lecture Notes in Mathematics 1080, Springer-Verlag Berlin, Heidelberg, New York, Tokyo.
[4] H. Maass, Die Bestimmung der Dirichletreihen mit Größencharakteren zu den Modulformenn-ten Grades. J. Indian Math. Soc.19, 1–23 (1955).
[5] H. Maass, Spherical functions and quadratic forms. J. Indian Math. Soc.20, 117–162 (1956). · Zbl 0072.08401
[6] H. Maass, Zetafunktionen mit GröBencharakteren und Kugelfunktionen. Math. Ann.134, 1–36 (1957). · Zbl 0082.06601 · doi:10.1007/BF01342828
[7] H. Maass, Zur Theorie der Kugelfunktionen einer Matrixvariablen. Math. Ann.135, 391–416 (1958). · Zbl 0083.06001 · doi:10.1007/BF01342956
[8] H. Maass, Siegel’s modular forms and Dirichlet series. Springer Lecture Notes in Mathematics216. · Zbl 0224.10028
[9] A. Selberg: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc.20, 47–87 (1956). · Zbl 0072.08201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.