×

A numerical approach toward the \(p\)-adic Beilinson conjecture for elliptic curves over \(\mathbb{Q}\). (English) Zbl 07684029

Summary: Restricting ourselves to elliptic curves over \(\mathbb{Q}\), we reformulate the \(p\)-adic Beilinson conjecture due to Perrin-Riou, which is customized to our computational approach. We then develop a new algorithm for numerical verifications of the \(p\)-adic Beilinson conjecture, which is based on the theory of rigid cohomology and \(F\)-isocrystals.

MSC:

11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
11S40 Zeta functions and \(L\)-functions
14F30 \(p\)-adic cohomology, crystalline cohomology
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F85 \(p\)-adic theory, local fields
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)

References:

[1] Amice, Y., Vélu, J.: Distributions \(p\)-adiques associées aux séries de Hecke. Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974), Astérisque, Nos. 24-25, Soc. Math. France, Paris, pp. 119-131 (1975) · Zbl 0332.14010
[2] Asakura, M., Regulators of \(K_2\) of hypergeometric fibrations, Res. Num. Theory, 4, 2, 25 (2018) · Zbl 1468.14018
[3] Asakura, M.: New \(p\)-adic hypergeometric functions and syntomic regulators. (2018) arXiv:1811.03770
[4] Asakura, M.: A generalization of the Ross symbols in higher \(K\)-groups and hypergeometric functions I, (2003). arXiv:2003.10652
[5] Asakura, M., Miyatani, K.: Milnor \(K\)-theory, \(F\)-isocrystals and syntomic regulators. arXiv:2007.14255
[6] Ash, A.; Stevens, G., Modular forms in characteristic \(l\) and special values of their \(L\)-functions, Duke Math. J., 53, 849-868 (1986) · Zbl 0618.10026 · doi:10.1215/S0012-7094-86-05346-9
[7] Bannai, K., Kings, G.: \(p\)-adic Beilinson conjecture for ordinary Hecke motives associated to imaginary quadratic fields. Algebraic number theory and related topics 2009, 9-30, RIMS Kôkyûroku Bessatsu, B25, Res. Inst. Math. Sci. (RIMS), Kyoto, (2011) · Zbl 1248.14025
[8] Beĭlinson, AA, Higher regulators and values of \(L\)-functions, J. Soviet Math., 30, 2036-2070 (1985) · Zbl 0588.14013 · doi:10.1007/BF02105861
[9] Bellaïche, J., Critical \(p\)-adic \(L\)-functions, Invent. Math., 189, 1, 1-60 (2012) · Zbl 1318.11067 · doi:10.1007/s00222-011-0358-z
[10] Bertolini, M.; Darmon, H., Kato’s Euler system and rational points on elliptic curves I: a p-adic Beilinson formula, Israel J. Math., 199, 1, 163-188 (2014) · Zbl 1317.11071 · doi:10.1007/s11856-013-0047-2
[11] Bertolini, M.; Darmon, H.; Prasanna, K., Generalized Heegner cycles and p-adic Rankin L-series. With an appendix by Brian Conrad., Duke Math. J., 162, 6, 1033-1148 (2013) · Zbl 1302.11043 · doi:10.1215/00127094-2142056
[12] Besser, A.: Syntomic regulators and \(p\)-adic integration. I. Rigid syntomic regulators. Proceedings of the Conference on \(p\)-adic Aspects of the Theory of Automorphic Representations (Jerusalem, 1998). Israel J. Math. 120, Part B, 291-334, (2000) · Zbl 1001.19003
[13] Bosma, W., Cannon, J., Playoust, C., The Magma algebra system. I. The user language. Computational algebra and number theory (London, 1993). J. Symbolic Comput. 24(3-4), 235-265, (1997) · Zbl 0898.68039
[14] Brunault, F.: Régulateurs \(p\)-adiques explicites pour le \(K_2\) des courbes elliptiques. Actes de la Conférence “Fonctions L et Arithmétique” Publ. Math. Besanson Algébre Théorie Nr., Lab. Math. Besançon, Besançon, 29-57, (2010) · Zbl 1282.11050
[15] Brunault, F.: Compare in \(K_2\), https://github.com/francoisbrunault/Compare-in-K2 (version:2022-11-06)
[16] Castella, F.; Wang-Erickson, C., Class groups and local indecomposability for non-CM forms. With an appendix by Haruzo Hida, J. Eur. Math. Soc. (JEMS), 24, 4, 1103-1160 (2022) · Zbl 1500.11048 · doi:10.4171/JEMS/1107
[17] Cremona, J.E.: Algorithms for modular elliptic curves. Cambridge University Press, Cambridge, Second Edn, (1997). vi+376 pp · Zbl 0872.14041
[18] Emerton, M., Kisin, M.: An introduction to the Riemann-Hilbert correspondence for unit \(F\)-crystals. Geometric aspects of Dwork theory. Vol. I, II, 677-700, Walter de Gruyter, Berlin (2004) · Zbl 1104.14012
[19] Esnault, H.; Vieweg, E., Deligne-Beĭlinson cohomology Beĭlinson’s conjectures on special values of \(L\)-functions, Perspect. Math., 4, 43-91 (1988) · Zbl 0656.14012
[20] Fontaine, J.-M., Messing, W.: \(p\)-adic periods and \(p\)-adic etale cohomology. Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), 179-207, Contemp. Math., 67, Amer. Math. Soc., Providence, RI, (1987) · Zbl 0632.14016
[21] Garland, H., A finiteness theorem for \(K_2\) of a number field, Ann. Math. (2), 94, 534-548 (1971) · Zbl 0247.12103 · doi:10.2307/1970769
[22] Goncharov, AB; Levin, AM, Zagier’s conjecture on \(L(E,2)\), Invent. Math., 132, 2, 393-432 (1998) · Zbl 1011.11043 · doi:10.1007/s002220050228
[23] Hartshorne, R.: Residues and duality. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture notes in mathematics, No. 20, Springer, Berlin & New York, pp. vii+423 (1966) · Zbl 0212.26101
[24] Hartshorne, R., On the De Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math., 45, 5-99 (1975) · Zbl 0326.14004 · doi:10.1007/BF02684298
[25] Hartshorne, R.: Algebraic geometry. Graduate texts in mathematics, No. 52. Springer, New York & Heidelberg, pp. xvi+496 (1977) · Zbl 0367.14001
[26] Kato, K.: On \(p\)-adic vanishing cycles (application of ideas of Fontaine-Messing). Algebraic geometry, Sendai, 1985, 207-251, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, (1987) · Zbl 0645.14009
[27] Kato, K.: Logarithmic structures of Fontaine-Illusie. Algebraic analysis, geometry, and number theory Baltimore, MD, pp. 191-224, 1989. Johns Hopkins University Press, Baltimore, MD (1988) · Zbl 0776.14004
[28] Kato, K.: \(p\)-adic Hodge theory and values of zeta functions of modular forms. Cohomologies \(p\)-adiques et applications arithmétiques. III. Astérisque No. 295 ix, 117-290 (2004) · Zbl 1142.11336
[29] Kedlaya, K.: \(p\)-adic differential equations. Cambridge studies in advanced mathematics, 125. Cambridge University Press, Cambridge, pp. xviii+380 (2010)
[30] Kedlaya, K.; Tuitman, J., Effective convergence bounds for Frobenius structures on connections, Rend. Semin. Mat. Univ. Padova, 128, 7-16 (2012) · Zbl 1276.14032 · doi:10.4171/RSMUP/128-2
[31] Kings, G.; Loeffler, D.; Zerbes, S-L, Rankin-Eisenstein classes for modular forms, Amer. J. Math., 142, 1, 79-138 (2020) · Zbl 1469.11164 · doi:10.1353/ajm.2020.0002
[32] Lauder, A., Rigid cohomology and \(p\)-adic point counting, J. Théor. Nombres Bordeaux, 17, 1, 169-180 (2005) · Zbl 1087.14020 · doi:10.5802/jtnb.484
[33] Mazur, B.; Swinnerton-Dyer, P., Arithmetic of Weil curves, Invent. Math., 25, 1-61 (1974) · Zbl 0281.14016 · doi:10.1007/BF01389997
[34] Mazur, B.; Tate, J.; Teitelbaum, J., On \(p\)-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., 84, 1-48 (1986) · Zbl 0699.14028 · doi:10.1007/BF01388731
[35] Mellit, A., Elliptic dilogarithms and parallel lines, J. Number Theory, 204, 1-24 (2019) · Zbl 1464.11112 · doi:10.1016/j.jnt.2019.03.019
[36] Nekovář, J.; Nizioł, W., Syntomic cohomology and \(p\)-adic regulators for varieties over \(p\)-adic fields. With appendices by Laurent Berger and Frédéric Déglise, Algeb. Numb. Theory, 10, 8, 1695-1790 (2016) · Zbl 1375.14081 · doi:10.2140/ant.2016.10.1695
[37] Niklas, M.: Rigid syntomic regulators and the \(p\)-adic \(L\)-function of a modular form. Regensburg PhD Thesis, (2010), available at http://epub.uni-regensburg.de/19847/
[38] NIST Handbook of mathematical functions. Edited by Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert and Charles W. Clark. With 1 CD-ROM (Windows, Macintosh and UNIX). U.S. Department of Commerce, National institute of standards and technology, Washington, DC; Cambridge University Press, Cambridge, pp. xvi+951 (2010) · Zbl 1198.00002
[39] Perrin-Riou, B.: \(p\)-adic \(L\)-functions and \(p\)-adic representations. SMF/AMS Texts and Monographs, 3. American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, pp. xx+150 (2000) · Zbl 0988.11055
[40] Pollack, R.: OMS, version:2022-12-03. https://github.com/rpollack9974/OMS/tree/master/AsakuraChida
[41] Pollack, R.; Stevens, G., Overconvergent modular symbols and \(p\)-adic \(L\)-functions, Ann. Sci. Éc. Norm. Supér. (4), 44, 1, 1-42 (2011) · Zbl 1268.11075 · doi:10.24033/asens.2139
[42] Pollack, R.; Stevens, G., Critical slope \(p\)-adic \(L\)-functions, J. Lond. Math. Soc. (2), 87, 2, 428-452 (2013) · Zbl 1317.11051 · doi:10.1112/jlms/jds057
[43] Quillen, D.: Higher algebraic \(K\)-theory. I. Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 85-147. Lecture Notes in Math., Vol. 341, Springer, Berlin (1973) · Zbl 0292.18004
[44] Rodrigues Jacinto, J., \((\varphi , \Gamma )\)-modules de de Rham et fonctions \(L p\)-adiques, (French) Algeb. Number Theory, 12, 4, 885-934 (2018) · Zbl 1451.11132 · doi:10.2140/ant.2018.12.885
[45] Rogers, M.; Zudilin, W., From \(L\)-series of elliptic curves to Mahler measures, Compos. Math., 148, 2, 385-414 (2012) · Zbl 1260.11062 · doi:10.1112/S0010437X11007342
[46] Schneider, P.: Introduction to the Beĭlinson conjectures. Beĭlinson’s conjectures on special values of \(L\)-functions, 1-35, Perspect. Math., Vol. 4, Academic Press, Boston, MA (1988) · Zbl 0673.14007
[47] Scholl, A., Motives for modular forms, Invent. Math., 100, 2, 419-430 (1990) · Zbl 0760.14002 · doi:10.1007/BF01231194
[48] Scholl, A.: Integral elements in \(K\)-theory and products of modular curves. (English summary) The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), 467-489, NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, (2000) · Zbl 0982.14009
[49] Steenbrink, J., Limits of Hodge structures, Invent. Math., 31, 3, 229-257 (1976) · Zbl 0303.14002 · doi:10.1007/BF01403146
[50] Stienstra, J.; Beukers, F., On the Picard-Fuchs equation and the formal Brauer group of certian elliptic K3-surfaces, Math. Ann., 271, 269-304 (1985) · Zbl 0539.14006 · doi:10.1007/BF01455990
[51] The PARI Group, Univ. Bordeaux. PARI/GP version 2.11.3, 2020. available from http://pari.math.u-bordeaux.fr/
[52] Van der Put, M.: The cohomology of Monsky and Washnitzer. (French summary) Introductions aux cohomologies \(p\)-adiques (Luminy, 1984). Mḿ. Soc. Math. France (N.S.) No. 23, 4, 33-59 (1986)
[53] Vishik, M., Nonarchimedean measures connected with Dirichlet series, Math. USSR Sb., 28, 216-228 (1976) · Zbl 0369.14010 · doi:10.1070/SM1976v028n02ABEH001648
[54] Weibel, C.A.: An introduction to homological algebra. Cambridge studies in advanced mathematics, Vol. 38. Cambridge University Press, Cambridge, pp. xiv+450 (1994) · Zbl 0797.18001
[55] Zhao, B., Local indecomposability of Hilbert modular Galois representations, Ann. Inst. Fourier (Grenoble), 64, 4, 1521-1560 (2014) · Zbl 1306.11046 · doi:10.5802/aif.2889
[56] Zucker, S.: Degeneration of Hodge bundles (after Steenbrink). Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982), pp. 121-141, Ann. of Math. Stud., 106, Princeton Univ. Press, Princeton, NJ, (1984) · Zbl 0574.14008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.