×

Explicit resolutions of cubic cusp singularities. (English) Zbl 0999.11023

From the text: Resolutions of cusp singularities are crucial to many techniques in computational number theory, and therefore finding explicit resolutions of these singularities has been the focus of a great deal of research. This paper presents an implementation of a sequence of algorithms leading to explicit resolutions of cusp singularities (of Hilbert varieties) arising from totally real cubic fields. As an example, the implementation is used to compute values of partial zeta functions associated to these cusps following Shintani’s approach.
The resolutions derived here are based on the work of F. Ehlers [Math. Ann. 127-156 (1975; Zbl 0301.14003)] and E. Thomas and A. T. Vasquez [Math. Ann. 247, 1-20 (1980; Zbl 0403.14005)].

MSC:

11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
11Y40 Algebraic number theory computations
14E15 Global theory and resolution of singularities (algebro-geometric aspects)
14G35 Modular and Shimura varieties
11R16 Cubic and quartic extensions
11R42 Zeta functions and \(L\)-functions of number fields

Software:

LiDIA
Full Text: DOI

References:

[1] A. Ash, D. Mumford, M. Rapoport, and Y. Tai, Smooth compactification of locally symmetric varieties, Math. Sci. Press, Brookline, Mass., 1975. Lie Groups: History, Frontiers and Applications, Vol. IV. · Zbl 0334.14007
[2] W. E. H. Berwick. Algebraic number fields with two independent units. Proc. London Math. Soc., 34:360-378, 1932. · Zbl 0005.34203
[3] Harvey Cohn, Formal ring of a cubic solid angle, J. Number Theory 10 (1978), no. 2, 135 – 150. · Zbl 0382.10022 · doi:10.1016/0022-314X(78)90032-X
[4] T. W. Cusick and Lowell Schoenfeld, A table of fundamental pairs of units in totally real cubic fields, Math. Comp. 48 (1987), no. 177, 147 – 158. · Zbl 0611.12002
[5] Fritz Ehlers, Eine Klasse komplexer Mannigfaltigkeiten und die Auflösung einiger isolierter Singularitäten, Math. Ann. 218 (1975), no. 2, 127 – 156 (German). · Zbl 0301.14003 · doi:10.1007/BF01370816
[6] H. G. Grundman, The arithmetic genus of Hilbert modular varieties over non-Galois cubic fields, J. Number Theory 37 (1991), no. 3, 343 – 365. · Zbl 0715.11023 · doi:10.1016/S0022-314X(05)80047-2
[7] C. Haspel and A. Vasquez. Toroidal structures associated with totally real cubic number fields. Technical Report TR 73-026, IBM Systems Research Institute, New York, 1983.
[8] Friedrich Hirzebruch, Gesammelte Abhandlungen. Band I, II, Springer-Verlag, Berlin, 1987 (German). 1951 – 1962; 1963 – 1987. · Zbl 0627.01044
[9] LiDIA-Group. LiDIA - A library for computational number theory. Universität des Saarlandes, 1995.
[10] M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Encyclopedia of Mathematics and its Applications, vol. 30, Cambridge University Press, Cambridge, 1989. · Zbl 0685.12001
[11] I. Satake, On the arithmetic of tube domains (blowing-up of the point at infinity), Bull. Amer. Math. Soc. 79 (1973), 1076 – 1094. · Zbl 0332.32023
[12] Takuro Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), no. 2, 393 – 417. · Zbl 0349.12007
[13] Emery Thomas, Fundamental units for orders in certain cubic number fields, J. Reine Angew. Math. 310 (1979), 33 – 55. · Zbl 0427.12005
[14] E. Thomas and A. T. Vasquez, On the resolution of cusp singularities and the Shintani decomposition in totally real cubic number fields, Math. Ann. 247 (1980), no. 1, 1 – 20. · Zbl 0403.14005 · doi:10.1007/BF01359864
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.