×

Modular representations of reductive Lie algebras. (English) Zbl 0976.17004

The goal of this paper is to study the representations of reduced universal enveloping algebras of Lie algebras arising from a reductive algebraic group over an algebraically closed field of prime characteristic.
The author starts by considering the general setup of a finite-dimensional restricted Lie algebra \({\mathfrak g}\) over an arbitrary ground field of prime characteristic which is graded by a free abelian group \(Y\) of finite rank. Under the assumption that the \(p\)-character \(\chi\) vanishes on the homogeneous components of \({\mathfrak g}\) with non-zero degree, the \(\chi\)-reduced universal enveloping algebra of \({\mathfrak g}\) is also a finite-dimensional \(Y\)-graded algebra. Several basic properties of the graded modules over such algebras are proved in the preliminary section. This also gives a more down-to-earth version of the author’s earlier approach to this topic.
For the rest of the paper \({\mathfrak g}\) is the Lie algebra of a connected reductive algebraic group over an algebraically closed field of prime characteristic. Moreover, it is assumed that the \(p\)-character \(\chi\) has so-called standard Levi form, so that the preliminary section can be applied (e.g. to show results on the duals of baby Verma modules and on the structure of projective indecomposables). The author constructs a certain filtration for every baby Verma module and proves a sum formula for these filtrations. The sum formula is then used to derive a strong linkage principle for baby Verma modules and to show that certain simple modules occur with multiplicity one as composition factors in certain baby Verma modules. The latter yields some properties of translation functors. It should be noted that many features of these representations are similar to those of the Bernstein-Gel’fand-Gel’fand category of a finite-dimensional complex semisimple Lie algebra or to the representations of reductive algebraic groups in prime characteristic.
The results obtained so far can be applied to compute the characters and dimensions of simple modules in several cases. In the last section this is demonstrated in one case for \(B_2\) which avoids the brute force computations in an earlier preprint of the author. All cases (including all cases of rank two) checked by the author confirm G. Lusztig’s hope in [Represent. Theory 1, 207-279 (1997; Zbl 0895.20031)] that the multiplicities of composition factors of baby Verma modules are given by values at 1 of certain polymomials.

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B50 Modular Lie (super)algebras
17B20 Simple, semisimple, reductive (super)algebras
17B35 Universal enveloping (super)algebras
17B45 Lie algebras of linear algebraic groups

Citations:

Zbl 0895.20031
Full Text: DOI

References:

[1] H.H. Andersen, J.C. Jantzen, W. Soergel, Representations of quantum groups at a \(p\) th root of unity and of semisimple groups in characteristic \(p\): independence of \(p\), Astérisque 220 (1994).; H.H. Andersen, J.C. Jantzen, W. Soergel, Representations of quantum groups at a \(p\) th root of unity and of semisimple groups in characteristic \(p\): independence of \(p\), Astérisque 220 (1994). · Zbl 0802.17009
[2] Berkson, A. J., The \(u\)-algebra of a restricted Lie algebra is Frobenius, Proc. Amer. Math. Soc., 15, 14-15 (1964) · Zbl 0119.27401
[3] I.N. Bernshtein, I.M. Gel’fand, S.I. Gel’fand, Category of \(g\) modules, Funct. Anal. Appl. 10 (1976) 87-92; translated from: Oбoднoй кaтeгopии \(g\)-мoдyлeй, Фyнкц. aнaлиз и eгo пpил. 10(2) (1976) 1-8.; I.N. Bernshtein, I.M. Gel’fand, S.I. Gel’fand, Category of \(g\) modules, Funct. Anal. Appl. 10 (1976) 87-92; translated from: Oбoднoй кaтeгopии \(g\)-мoдyлeй, Фyнкц. aнaлиз и eгo пpил. 10(2) (1976) 1-8. · Zbl 0353.18013
[4] N. Bourbaki, Algèbre, Hermann, Paris, 1962 (Chapter 2).; N. Bourbaki, Algèbre, Hermann, Paris, 1962 (Chapter 2).
[5] E.T. Cline, B.J. Parshall, L.L. Scott Jr., On injective modules for infinitesimal algebraic groups I, J. London Math. Soc. (2) 31 (1985) 277-291.; E.T. Cline, B.J. Parshall, L.L. Scott Jr., On injective modules for infinitesimal algebraic groups I, J. London Math. Soc. (2) 31 (1985) 277-291. · Zbl 0567.20024
[6] Curtis, C. W., Representations of Lie algebras of classical type with applications to linear groups, J. Math. Mech., 9, 307-326 (1960) · Zbl 0089.25302
[7] A.S. Dzhumadil’daev, Cohomology of truncated coinduced representations of Lie algebras of positive characteristic, Math. USSR-Sbornik 66 (1990) 461-473; translated from: Koгoмoлoгии cpeзaнньIX кoиндyциpoBaнньIX пpeдcTaBлeний aлгeбp Ли нaд пoлeм пoлoжитeльнoй xapaкTepиcтиkи, мaтeм Cб. 180 (1989) 456-468.; A.S. Dzhumadil’daev, Cohomology of truncated coinduced representations of Lie algebras of positive characteristic, Math. USSR-Sbornik 66 (1990) 461-473; translated from: Koгoмoлoгии cpeзaнньIX кoиндyциpoBaнньIX пpeдcTaBлeний aлгeбp Ли нaд пoлeм пoлoжитeльнoй xapaкTepиcтиkи, мaтeм Cб. 180 (1989) 456-468.
[8] Farnsteiner, R.; Strade, H., Shapiro’s lemma and its consequences in the cohomology theory of modular Lie algebras, Math. Z., 206, 153-168 (1991) · Zbl 0727.17010
[9] Feldvoss, J., On the cohomology of restricted Lie algebras, Comm. Algebra, 19, 2865-2906 (1991) · Zbl 0741.17006
[10] Friedlander, E. M.; Parshall, B. J., Modular representation theory of Lie algebras, Amer. J. Math., 110, 1055-1093 (1988) · Zbl 0673.17010
[11] Fridelander, E. M.; Parshall, B. J., Deformations of Lie algebra representations, Amer. J. Math., 112, 375-395 (1990) · Zbl 0714.17007
[12] Gordon, R.; Green, E. L., Graded Artin algebras, J. Algebra, 76, 111-137 (1982) · Zbl 0491.16001
[13] Holmes, R. R.; Nakano, D. K., Brauer-type reciprocity for a class of graded associative algebras, J. Algebra, 144, 117-126 (1991) · Zbl 0749.16024
[14] Humphreys, J. E., Modular representations of classical Lie algebras and semisimple groups, J. Algebra, 19, 51-79 (1971) · Zbl 0219.17003
[15] Humphreys, J. E., Modular representations of simple Lie algebras, Bull. Amer. Math Soc. (N.S.), 35, 105-122 (1998) · Zbl 0962.17013
[16] Jantzen, J. C., Über Darstellungen höherer Frobenius-Kerne halbeinfacher algebraischer Gruppen, Math. Z., 164, 271-292 (1979) · Zbl 0396.20029
[17] J.C. Jantzen, Representations of Algebraic Groups, Pure and Applied Mathematics, Vol. 131, Academic, Orlando, 1987.; J.C. Jantzen, Representations of Algebraic Groups, Pure and Applied Mathematics, Vol. 131, Academic, Orlando, 1987. · Zbl 0654.20039
[18] Jantzen, J. C., Subregular nilpotent representations of \(sln\) and \(so2n+1\), Math. Proc. Cambridge Philos. Soc., 126, 223-257 (1999) · Zbl 0939.17008
[19] J.C. Jantzen, Representations of \(so5\) in prime characteristic, preprint July 1997 (Aarhus series 1997:13).; J.C. Jantzen, Representations of \(so5\) in prime characteristic, preprint July 1997 (Aarhus series 1997:13).
[20] J.C. Jantzen, Representations of Lie algebras in prime characteristic, in: A. Broer (Ed.), Proceedings of the NATO ASI Representation Theories and Algebraic Geometry, Montréal, 1997, Kluwer, Dordrecht, 1998, pp. 185-235.; J.C. Jantzen, Representations of Lie algebras in prime characteristic, in: A. Broer (Ed.), Proceedings of the NATO ASI Representation Theories and Algebraic Geometry, Montréal, 1997, Kluwer, Dordrecht, 1998, pp. 185-235. · Zbl 0974.17022
[21] V.G. Kats, O нeпpbиBo димьIX пpeдcтaBлeнeнияX aлгeбp Ли кпaccичeckoгo тиπa, ycпexи мaт. Hayк (Irreducible representations of Lie algebras of classical type), 27(5) (1972) 237-238.; V.G. Kats, O нeпpbиBo димьIX пpeдcтaBлeнeнияX aлгeбp Ли кпaccичeckoгo тиπa, ycпexи мaт. Hayк (Irreducible representations of Lie algebras of classical type), 27(5) (1972) 237-238. · Zbl 0262.17002
[22] Lusztig, G., Periodic \(W\)-graphs, Represent., Theory, 1, 207-279 (1997) · Zbl 0895.20031
[23] H. Nagao, Y. Tsushima, Representations of Finite Groups, Academic, Boston, 1988.; H. Nagao, Y. Tsushima, Representations of Finite Groups, Academic, Boston, 1988. · Zbl 0673.20002
[24] Nakano, D. K., Projective modules over Lie algebras of Cartan type, Mem. Amer. Math. Soc., 98, 470 (1992) · Zbl 0757.17015
[25] T. Nakayama, On Frobeniusean algebras II, Ann. Math. (2) 42 (1941) 1-21.; T. Nakayama, On Frobeniusean algebras II, Ann. Math. (2) 42 (1941) 1-21. · JFM 67.0092.04
[26] Nakayama, T.; Tsuzuku, T., On Frobenius extensions I, Nagoya. Math. J., 17, 89-110 (1960) · Zbl 0204.05101
[27] L. Rowen, Ring Theory, Vol. I, Pure and Applied Mathematics, Vol. 127, Academic Press, Boston, 1988.; L. Rowen, Ring Theory, Vol. I, Pure and Applied Mathematics, Vol. 127, Academic Press, Boston, 1988. · Zbl 0651.16001
[28] Schue, J. R., Symmetry for the enveloping algebra of a restricted Lie algebra, Proc. Amer. Math. Soc., 16, 1123-1124 (1965) · Zbl 0136.02104
[29] Guang Yu, Shen, Graded modules of graded Lie algebras of Cartan type II, Positive and negative graded modules, Sci. Sinica (A), 29, 1009-1019 (1986) · Zbl 0615.17009
[30] H. Strade, R. Farnsteiner, Modular Lie algebras and their representations, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 116, Marcel Dekker, New York, 1988.; H. Strade, R. Farnsteiner, Modular Lie algebras and their representations, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 116, Marcel Dekker, New York, 1988. · Zbl 0648.17003
[31] B.Yu. Veisfeiler, V.G. Kats, Irreducible representations of Lie \(p\)-algebras, Funct. Anal. Appl. 5 (1971) 111-117, translated from: O нeпиBoдимьIX ппpeдCтaBлe-нибж \(p\)—a \(лг\) e \(б\) p \(Ли, Ф\) y \(нкц\). a \(н\) a \(лизи\) e \(г\) o \(п\) p \(ил 5(2) (1971) 28-36\).; B.Yu. Veisfeiler, V.G. Kats, Irreducible representations of Lie \(p\)-algebras, Funct. Anal. Appl. 5 (1971) 111-117, translated from: O нeпиBoдимьIX ппpeдCтaBлe-нибж \(p\)—a \(лг\) e \(б\) p \(Ли, Ф\) y \(нкц\). a \(н\) a \(лизи\) e \(г\) o \(п\) p \(ил 5(2) (1971) 28-36\).
[32] Voigt, D., Endliche Hopfalgebren, Math. Z., 134, 189-203 (1973) · Zbl 0279.16002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.