×

Hereditary interval algebras and cardinal characteristics of the continuum. (English) Zbl 1480.03044

An interval algebra is a Boolean algebra \(B\) which is isomorphic to the algebra of finite unions of half-open intervals, of a linearly ordered set. The interval algebra \(B\) is hereditary if all its subalgebras are interval algebras. M. Bekkali and S. Todorčević [Algebra Univers. 73, No. 1, 87–95 (2015; Zbl 1338.06013)] showed that every hereditary interval algebra is \(\sigma\)-centered. But not all \(\sigma\)-centered interval algebras are hereditary.
Here, the authors investigate the natural cardinal invariant \(\mathfrak{h} \mathfrak{i} \mathfrak{a}\), which denotes the minimal cardinality of a non-hereditary interval \(\sigma\)-centered algebra. It is known that \(\mathfrak{h} \mathfrak{i} \mathfrak{a} \geq \mathfrak{b}\).
In this paper, it is shown that for every uncountable regular cardinal \(\kappa\), it is consistent that \(\mathfrak{b} \leq \mathfrak{h} \mathfrak{i} \mathfrak{a} = \kappa\) and \(\mathfrak{b} = \aleph_1\). The authors answer a question of Bekkali and Todorčević [loc. cit.] by showing that it is consistent that every \(\sigma\)-centered interval algebra of size \(\mathfrak{b}\) is hereditary. They introduce a mild strengthening \(\mathfrak{b}_2\) of \(\mathfrak{b}\) and show that \(\mathfrak{b} \leq \mathfrak{h} \mathfrak{i} \mathfrak{a} \leq \mathfrak{b}_2\) and they complete their results by showing that in ZFC, there is a hereditary interval algebra of cardinality \(\aleph_1\).

MSC:

03E17 Cardinal characteristics of the continuum
03E35 Consistency and independence results
03G05 Logical aspects of Boolean algebras
06E05 Structure theory of Boolean algebras
06E10 Chain conditions, complete algebras

Citations:

Zbl 1338.06013

References:

[1] Bekkali, M., Pseudo tree algebras, Notre Dame Journal of Formal Logic, 42, 101-108 (2001) · Zbl 1032.06007 · doi:10.1305/ndjfl/1054837936
[2] Bekkali, M.; Bonnet, R., Rigid Boolean algebras, 637-678 (1989), Amsterdam: North-Holland, Amsterdam
[3] Bekkali, M.; Todorčević, S., Algebras that are hereditarily interval, Algebra Universalis, 73, 87-95 (2015) · Zbl 1338.06013 · doi:10.1007/s00012-014-0315-y
[4] Blass, A., Combinatorial cardinal characteristics of the continuum, 395-489 (2010), Dordrecht: Springer, Dordrecht · Zbl 1198.03058
[5] Brendle, J., Evasion and prediction-the Specker phenomenon and Gross spaces, Forum Mathematicum, 7, 513-542 (1995) · Zbl 0830.03026 · doi:10.1515/form.1995.7.513
[6] Heindorf, L., On subalgebras of Boolean interval algebras, Proceedings of the American Mathematical Society, 125, 2265-2274 (1997) · Zbl 0921.06011 · doi:10.1090/S0002-9939-97-03851-3
[7] Jech, T., Set Theory (2003), Berlin: Springer, Berlin · Zbl 1007.03002
[8] Koppelberg, S.; Monk, J. D., Pseudo-trees and Boolean algebras, Order, 8, 359-374 (1991) · Zbl 0778.06011 · doi:10.1007/BF00571186
[9] Kunen, K., An Introduction to Independence Proofs (1983), Amsterdam: North-Holland, Amsterdam · Zbl 0534.03026
[10] Miller, A. W., Special subsets of the real line, Handbook of Set-theoretic Topology, 201-233 (1984), Amsterdam: North-Holland, Amsterdam · Zbl 0588.54035 · doi:10.1016/B978-0-444-86580-9.50008-2
[11] Monk, J. D.; Bonnet, R.; R, Handbook of Boolean Algebras. Vol. 1 (1989), Amsterdam: North-Holland, Amsterdam · Zbl 0671.06001
[12] Mostowski, A.; Tarski, A., Boolesche Ringe mit geordneter Basis, Fundamenta Mathematicae, 32, 69-86 (1939) · JFM 65.0086.03 · doi:10.4064/fm-32-1-69-86
[13] Nikiel, J.; Purisch, S.; Treybig, L. B., Separable zero-dimensional spaces which are continuous images of ordered compacta, Houston Journal of Mathematics, 24, 45-56 (1998) · Zbl 0965.54034
[14] Odintsov, A. A., Separable images of ordered compacta, Vestnik Moskovskogo Universiteta. Seriya I. Matematika, Mekhanika, 3, 35-38 (1989)
[15] Todorčević, S., Trees and linearly ordered, Handbook of Set-theoretic Topology, 235-293 (1984), Amsterdam: North-Holland, Amsterdam · Zbl 0557.54021 · doi:10.1016/B978-0-444-86580-9.50009-4
[16] Todorčević, S., Analytic gaps, Fundamenta Mathematicae, 150, 55-66 (1996) · Zbl 0851.04002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.