×

Unboundedness of adjacency matrices of locally finite graphs. (English) Zbl 1234.05151

Summary: Given a locally finite simple graph so that its degree is not bounded, every self-adjoint realization of the adjacency matrix is unbounded from above. In this note, we give an optimal condition to ensure it is also unbounded from below. We also consider the case of weighted graphs. We discuss the question of self-adjoint extensions and prove an optimal criterium.

MSC:

05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05C22 Signed and weighted graphs
47A10 Spectrum, resolvent
47B25 Linear symmetric and selfadjoint operators (unbounded)

References:

[1] Berezanski J.M.: Expansions in Eigenfunctions of Selfadjoint Operators, ix + 809 pp. American Mathematical Society, Providence (1968) · Zbl 0157.16601
[2] Chung, F.R.K.: Spectral graph theory. In: Regional Conference Series in Mathematics, vol. 92, xii + 207 pp. American Mathematical Society, Providence (1997) · Zbl 0867.05046
[3] Cvetković, D., Doob, M., Sachs, H.: Spectra of graphs. Theory and application, 2nd edn, 368 pp. VEB Deutscher Verlag der Wissenschaften, Berlin (1982) · Zbl 0824.05046
[4] Davidoff, G., Sarnak, P., Valette, A.: Elementary number theory, group theory, and Ramanujan graphs. In: London Mathematical Society Student Texts, vol. 55, x+144 pp. Cambridge University Press, Cambridge (2003) · Zbl 1032.11001
[5] Doyle, P.G., Snell, J.L.: Random walks and electric networks. In: The Carus Mathematical Monographs, 159 pp. The Mathematical Association of America, Providence (1984) · Zbl 0583.60065
[6] Jorgensen P.E.T.: Essential self-adjointness of the graph-Laplacian. J. Math. Phys. 49(7), 073510, 33 (2008) · Zbl 1152.81496
[7] Keller, M., Lenz, D.: Dirichlet forms and stochastic completeness of graphs and subgraphs (2009). arXiv:0904.2985v1 [math.FA] · Zbl 1252.47090
[8] Keller M., Lenz D.: Unbounded Laplacians on graphs: basic spectral properties and the heat equation. Math. Model. Nat. Phenom. 5(2), 27 (2009) · Zbl 1207.47032
[9] Mohar, B., Omladic, M.: The spectrum of infinite graphs with bounded vertex degrees, graphs, hypergraphs and applications. In: Teubner Texte, vol. 73, pp. 122–125. Teubner, Leipzig (1985)
[10] Mohar B., Woess W.: A survey on spectra of infinite graphs. J. Bull. Lond. Math. Soc. 21(3), 209–234 (1989) · Zbl 0645.05048 · doi:10.1112/blms/21.3.209
[11] Müller V.: On the spectrum of an infinite graph. Linear Algebra Appl. 93, 187–189 (1987) · Zbl 0613.05042 · doi:10.1016/S0024-3795(87)90324-7
[12] Reed M., Simon B.: Methods of Modern Mathematical Physics, Tome I–IV: Analysis of operators. Academic Press, London (1975) · Zbl 0308.47002
[13] Schulz-Baldes, H.: Geometry of Weyl theory for Jacobi matrices with matrix entries (2008). arXiv:0804.3746v1 [math-ph] · Zbl 1197.47047
[14] Weber, A.: Analysis of the Laplacian and the heat flow on a locally finite graph (2008). arXiv:0801.0812v3 [math.SP]
[15] Wojciechowski R.: Heat kernel and essential spectrum of infinite graphs. Indiana Univ. Math. J. 58(3), 1419–1442 (2009) · Zbl 1231.05186 · doi:10.1512/iumj.2009.58.3575
[16] Wojciechowski, R.: Stochastic Completeness of Graphs. Ph.D. Thesis (2007). arXiv: 0712.1570v2[math.SP]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.