×

Analysis of two Weibull populations under joint progressively hybrid censoring. (English) Zbl 07773976

Summary: Joint Type-I progressive hybrid censoring scheme has been proposed to terminate the life-test experiment at maximum time that the experimenter can afford to continue. This article deals with the problem of estimating the two Weibull population parameters with the same shape parameter under joint Type-I progressively hybrid censoring scheme on the two samples using maximum likelihood and Bayesian inferential approaches. Using Fisher information matrix, the two-sided approximate confidence intervals of the unknown quantities are constructed. Under the assumption of independent gamma priors, the Bayes estimators are developed using squared-error loss function. Since the Bayes estimators cannot be expressed in closed forms, hence, Gibbs within Metropolis-Hastings algorithm is proposed to carry out the Bayes estimates and also to construct the corresponding credible intervals. Moreover, some popular joint censoring plans are generalized and can be obtained as a special cases from our results. Monte Carlo simulations are performed to assess the performance of the proposed estimators. To determine the optimal progressive censoring plan, two different optimality criteria are considered. Finally, to show the applicability of the proposed methods in real phenomenon, a real-life data set is analyzed.

MSC:

62F10 Point estimation
62F15 Bayesian inference
62N01 Censored data models
62N02 Estimation in survival analysis and censored data
62N05 Reliability and life testing

Software:

Maxlik; CODA; maxLik
Full Text: DOI

References:

[1] Abo-Kasem, O. E.; Nassar, M.; Dey, S.; Rasouli, A., Classical and Bayesian estimation for two exponential populations based on joint Type-I progressive hybrid censoring scheme, American Journal of Mathematical and Management Sciences, 38, 4, 373-85 (2019) · doi:10.1080/01966324.2019.1570407
[2] Ashour, S. K.; Abo-Kasem, O. E., Statistical inference for two exponential populations under joint progressive Type-I censored scheme, Communications in Statistics - Theory and Methods, 46, 7, 3479-88 (2017) · Zbl 1368.62254 · doi:10.1080/03610926.2015.1065329
[3] Ashour, S. K.; El-Sheikh, A. A.; Elshahhat, A., Inferences and optimal censoring schemes for progressively first-failure censored Nadarajah-Haghighi distribution (2020) · Zbl 07596026 · doi:10.1007/s13171-019-00175-2
[4] Balakrishnan, N.; Cramer, E., The art of progressive censoring (2014), New York: Birkhauser, New York · Zbl 1365.62001
[5] Balakrishnan, N.; Rasouli, A., Exact likelihood inference for two exponential populations under joint Type-II censoring, Computational Statistics & Data Analysis, 52, 5, 2725-38 (2008) · Zbl 1452.62723 · doi:10.1016/j.csda.2007.10.005
[6] Brooks, S., Markov chain Monte Carlo method and its application, Journal of the Royal Statistical Society: Series D (the Statistician), 47, 1, 69-100 (1998) · doi:10.1111/1467-9884.00117
[7] Childs, A.; Chandrasekar, B.; Balakrishnan, N.; Vonta, F.; Nikulin, M.; Limnios, N.; Huber-Carol, C., Statistical models and methods for biomedical and technical systems, Exact likelihood inference for an exponential parameter under progressive hybrid censoring schemes, 319-30 (2008), Boston, MA: Birkhäuser, Boston, MA
[8] Cohen, A. C., Truncated and censored samples: Theory and applications (1991), New York: Dekker, New York · Zbl 0742.62027
[9] Dey, S.; Singh, S.; Tripathi, Y. M.; Asgharzadeh, A., Estimation and prediction for a progressively censored generalized inverted exponential distribution, Statistical Methodology, 32, 185-202 (2016) · Zbl 1487.62117 · doi:10.1016/j.stamet.2016.05.007
[10] Doostparast, M.; Ahmadi, M. V.; Ahmadi, J., Bayes estimation based on joint progressive Type-II censored data under LINEX loss function, Communications in Statistics-Simulation and Computation, 42, 1865-86 (2013) · Zbl 1301.62101
[11] Dube, M.; Krishna, H.; Garg, R., Generalized inverted exponential distribution under progressive first-failure censoring, Journal of Statistical Computation and Simulation, 86, 6, 1095-114 (2016) · Zbl 1510.62409 · doi:10.1080/00949655.2015.1052440
[12] Epstein, B., Truncated life tests in the exponential case, The Annals of Mathematical Statistics, 25, 3, 555-64 (1954) · Zbl 0058.35104 · doi:10.1214/aoms/1177728723
[13] Gamerman, D.; Lopes, H. F., Markov chain Monte Carlo: Stochastic simulation for Bayesian inference (2006) · Zbl 1137.62011
[14] Henningsen, A.; Toomet, O., maxLik’: A package for maximum likelihood estimation in R, Computational Statistics, 26, 3, 443-58 (2011) · Zbl 1304.65039 · doi:10.1007/s00180-010-0217-1
[15] Johnson, N.; Kotz, S.; Balakrishnan, N., Continuous univariate distributions (1994), New York: John Wiley and Sons, New York · Zbl 0811.62001
[16] Kundu, D., Bayesian inference and life testing plan for the Weibull distribution in presence of progressive censoring, Technometrics, 50, 2, 144-54 (2008) · doi:10.1198/004017008000000217
[17] Kundu, D.; Joarder, A., Analysis of Type-II progressively hybrid censored data, Computational Statistics & Data Analysis, 50, 10, 2509-28 (2006) · Zbl 1284.62605 · doi:10.1016/j.csda.2005.05.002
[18] Lawless, J. F., Statistical models and methods for lifetime data (2003), New Jersey: John Wiley and Sons, New Jersey · Zbl 1015.62093
[19] Lee, K.; Cho, Y., Bayesian and maximum likelihood estimations of the inverted exponentiated half logistic distribution under progressive Type II censoring, Journal of Applied Statistics, 44, 5, 811-32 (2017) · Zbl 1516.62406 · doi:10.1080/02664763.2016.1183602
[20] Mondal, S.; Kundu, D., A new two sample Type-II progressive censoring scheme, Communications in Statistics - Theory and Methods, 48, 10, 2602-18 (2019) · Zbl 07530042 · doi:10.1080/03610926.2018.1472781
[21] Ng, H. K. T.; Chan, P. S.; Balakrishnan, N., Optimal progressive censoring plans for the Weibull distribution, Technometrics, 46, 4, 470-81 (2004) · doi:10.1198/004017004000000482
[22] Pareek, B.; Kundu, D.; Kumar, S., On progressively censored competing risks data for Weibull distribution, Computational Statistics & Data Analysis, 53, 12, 4083-94 (2009) · Zbl 1453.62170 · doi:10.1016/j.csda.2009.04.010
[23] Plummer, M.; Best, N.; Cowles, K.; Vines, K., coda’: convergence diagnosis and output analysis for, MCMC. R News, 6, 7-11 (2006)
[24] Pradhan, B.; Kundu, D., Inference and optimal censoring schemes for progressively censored Birnbaum-Saunders distribution, Journal of Statistical Planning and Inference, 143, 6, 1098-108 (2013) · Zbl 1428.62068 · doi:10.1016/j.jspi.2012.11.007
[25] Proschan, F., Theoretical explanation of observed decreasing failure rate, Technometrics, 5, 3, 375-83 (1963) · doi:10.1080/00401706.1963.10490105
[26] Rasouli, A.; Balakrishnan, N., Exact likelihood inference for two exponential populations under joint progressive Type-II censoring, Communications in Statistics - Theory and Methods, 39, 12, 2172-91 (2010) · Zbl 1318.62312 · doi:10.1080/03610920903009418
[27] Sen, T.; Tripathi, Y. M.; Bhattacharya, R., Statistical inference and optimum life testing plans under Type-II hybrid censoring scheme, Annals of Data Science, 5, 4, 679-708 (2018) · doi:10.1007/s40745-018-0158-z
[28] Su, F., Exact likelihood inference for multiple exponential populations under joint censoring (2013), McMaster University: McMaster University, Hamilton, Ontario
[29] Sultan, K. S.; Alsadat, N. H.; Kundu, D., Bayesian and maximum likelihood estimations of the inverse Weibull parameters under progressive Type-II censoring, Journal of Statistical Computation and Simulation, 84, 10, 2248-65 (2014) · Zbl 1453.62699 · doi:10.1080/00949655.2013.788652
[30] Tierney, L., Markov chains for exploring posterior distributions, The Annals of Statistics, 22, 4, 1701-28 (1994) · doi:10.1214/aos/1176325750
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.