×

Fluctuating dark energy and the luminosity distance. (English) Zbl 1522.83100


MSC:

83C56 Dark matter and dark energy
85A15 Galactic and stellar structure
83E05 Geometrodynamics and the holographic principle
81V22 Unified quantum theories
83F05 Relativistic cosmology
83C45 Quantization of the gravitational field
62H20 Measures of association (correlation, canonical correlation, etc.)
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
78A45 Diffraction, scattering
76Q05 Hydro- and aero-acoustics

Software:

CCL; CAMB; ASCL

References:

[1] Supernova Search Team Collaboration; Riess, Adam G., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116, 1009-1038 (1998) · doi:10.1086/300499
[2] Supernova Cosmology Project Collaboration; Perlmutter, S., Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J., 517, 565-586 (1999) · Zbl 1368.85002 · doi:10.1086/307221
[3] Verde, L.; Treu, T.; Riess, A. G., Tensions between the Early and the Late Universe, Nature Astron., 3, 891 (2019) · doi:10.1038/s41550-019-0902-0
[4] Di Valentino, Eleonora; Mena, Olga; Pan, Supriya; Visinelli, Luca; Yang, Weiqiang; Melchiorri, Alessandro; Mota, David F.; Riess, Adam G.; Silk, Joseph, In the realm of the Hubble tension — a review of solutions, Class. Quant. Grav., 38 (2021) · doi:10.1088/1361-6382/ac086d
[5] Planck Collaboration; Aghanim, N., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, A6 (2020) · doi:10.1051/0004-6361/201833910
[6] Heymans, Catherine, KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints, Astron. Astrophys., 646, A140 (2021) · doi:10.1051/0004-6361/202039063
[7] DES Collaboration; Abbott, T. M. C., Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.023520
[8] Joyce, Austin; Lombriser, Lucas; Schmidt, Fabian, Dark Energy Versus Modified Gravity, Ann. Rev. Nucl. Part. Sci., 66, 95-122 (2016) · doi:10.1146/annurev-nucl-102115-044553
[9] Tsujikawa, Shinji, Quintessence: A Review, Class. Quant. Grav., 30 (2013) · Zbl 1277.83012 · doi:10.1088/0264-9381/30/21/214003
[10] Baker, Tessa; Ferreira, Pedro G.; Skordis, Constantinos, The Parameterized Post-Friedmann framework for theories of modified gravity: concepts, formalism and examples, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.024015
[11] Sahni, Varun; Starobinsky, Alexei A., The Case for a positive cosmological Lambda term, Int. J. Mod. Phys. D, 9, 373-444 (2000) · doi:10.1142/S0218271800000542
[12] Di Valentino, Eleonora; Melchiorri, Alessandro; Silk, Joseph, Reconciling Planck with the local value of H_0 in extended parameter space, Phys. Lett. B, 761, 242-246 (2016) · doi:10.1016/j.physletb.2016.08.043
[13] Di Valentino, Eleonora; Melchiorri, Alessandro; Mena, Olga; Vagnozzi, Sunny, Interacting dark energy in the early 2020s: A promising solution to the H_0 and cosmic shear tensions, Phys. Dark Univ., 30 (2020) · doi:10.1016/j.dark.2020.100666
[14] Li, Xiaolei; Shafieloo, Arman; Sahni, Varun; Starobinsky, Alexei A., Revisiting Metastable Dark Energy and Tensions in the Estimation of Cosmological Parameters, Astrophys. J., 887, 153 (2019) · doi:10.3847/1538-4357/ab535d
[15] Vattis, Kyriakos; Koushiappas, Savvas M.; Loeb, Abraham, Dark matter decaying in the late Universe can relieve the H0 tension, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.121302
[16] Hill, J. Colin; McDonough, Evan; Toomey, Michael W.; Alexander, Stephon, Early dark energy does not restore cosmological concordance, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.043507
[17] Karwal, Tanvi; Kamionkowski, Marc, Dark energy at early times, the Hubble parameter, and the string axiverse, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.103523
[18] Poulin, Vivian; Smith, Tristan L.; Karwal, Tanvi; Kamionkowski, Marc, Early Dark Energy Can Resolve The Hubble Tension, Phys. Rev. Lett., 122 (2019) · doi:10.1103/PhysRevLett.122.221301
[19] Jedamzik, Karsten; Pogosian, Levon, Relieving the Hubble tension with primordial magnetic fields, Phys. Rev. Lett., 125 (2020) · doi:10.1103/PhysRevLett.125.181302
[20] Glavan, Drazen; Prokopec, Tomislav; Prymidis, Vasileios, Backreaction of a massless minimally coupled scalar field from inflationary quantum fluctuations, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.024024
[21] Glavan, D.; Prokopec, T.; van der Woude, D. C., Late-time quantum backreaction from inflationary fluctuations of a nonminimally coupled massless scalar, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.024014
[22] Glavan, Dražen; Prokopec, Tomislav; Takahashi, Tomo, Late-time quantum backreaction of a very light nonminimally coupled scalar, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.084053
[23] Glavan, Dražen; Prokopec, Tomislav; Starobinsky, Aleksei A., Stochastic dark energy from inflationary quantum fluctuations, Eur. Phys. J. C, 78, 371 (2018) · doi:10.1140/epjc/s10052-018-5862-5
[24] Belgacem, Enis; Prokopec, Tomislav, Quantum origin of dark energy and the Hubble tension, Phys. Lett. B, 831 (2022) · Zbl 1497.83016 · doi:10.1016/j.physletb.2022.137174
[25] Belgacem, Enis; Prokopec, Tomislav, Spatial correlations of dark energy from quantum fluctuations during inflation, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.123514
[26] LSST Collaboration; Ivezić, Željko, LSST: from Science Drivers to Reference Design and Anticipated Data Products, Astrophys. J., 873, 111 (2019) · doi:10.3847/1538-4357/ab042c
[27] S. Weinberg, Cosmology, Oxford University Press (2008). · Zbl 1147.83002
[28] Sasaki, Misao, The Magnitude - Redshift relation in a perturbed Friedmann universe, Mon. Not. Roy. Astron. Soc., 228, 653-669 (1987) · Zbl 0633.53096
[29] Bonvin, Camille; Durrer, Ruth; Gasparini, M. Alice, Fluctuations of the luminosity distance, Phys. Rev. D, 73 (2006) · doi:10.1103/PhysRevD.85.029901
[30] Biern, Sang Gyu; Yoo, Jaiyul, Correlation function of the luminosity distances, JCAP, 09 (2017) · doi:10.1088/1475-7516/2017/09/026
[31] Garoffolo, Alice; Raveri, Marco; Silvestri, Alessandra; Tasinato, Gianmassimo; Carbone, Carmelita; Bertacca, Daniele; Matarrese, Sabino, Detecting Dark Energy Fluctuations with Gravitational Waves, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.083506
[32] Cooray, Asantha R.; Holz, Daniel E.; Caldwell, Robert, Measuring dark energy spatial inhomogeneity with supernova data, JCAP, 11 (2010) · doi:10.1088/1475-7516/2010/11/015
[33] Kelly, Patrick L.; Hicken, Malcolm; Burke, David L.; Mandel, Kaisey S.; Kirshner, Robert P., Hubble Residuals of Nearby Type Ia Supernovae Are Correlated with Host Galaxy Masses, Astrophys. J., 715, 743-756 (2010) · doi:10.1088/0004-637X/715/2/743
[34] Riess, Adam G., A 2.4 · doi:10.3847/0004-637X/826/1/56
[35] Yoo, Jaiyul; Fitzpatrick, A. Liam; Zaldarriaga, Matias, A New Perspective on Galaxy Clustering as a Cosmological Probe: General Relativistic Effects, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.083514
[36] Yoo, Jaiyul, General Relativistic Description of the Observed Galaxy Power Spectrum: Do We Understand What We Measure?, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.083508
[37] Bonvin, Camille, Isolating relativistic effects in large-scale structure, Class. Quant. Grav., 31 (2014) · Zbl 1306.83059 · doi:10.1088/0264-9381/31/23/234002
[38] Bacon, David J.; Andrianomena, Sambatra; Clarkson, Chris; Bolejko, Krzysztof; Maartens, Roy, Cosmology with Doppler Lensing, Mon. Not. Roy. Astron. Soc., 443, 1900-1915 (2014) · doi:10.1093/mnras/stu1270
[39] Bonvin, Camille, Effect of Peculiar Motion in Weak Lensing, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.123530
[40] S. Dodelson and F. Schmidt, Modern cosmology, Academic Press (2020) []. · doi:10.1016/C2017-0-01943-2
[41] Limber, D. Nelson, The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II, Astrophys. J., 119, 655 (1954) · doi:10.1086/145870
[42] LSST Dark Energy Science Collaboration; Chisari, Nora Elisa, Core Cosmology Library: Precision Cosmological Predictions for LSST, Astrophys. J. Suppl., 242, 2 (2019) · doi:10.3847/1538-4365/ab1658
[43] A. Lewis and A. Challinor, CAMB: Code for Anisotropies in the Microwave Background, Astrophysics Source Code Library, ascl:1102.026.
[44] Broadhurst, Thomas J.; Taylor, A. N.; Peacock, J. A., Mapping cluster mass distributions via gravitational lensing of background galaxies, Astrophys. J., 438, 49 (1995) · doi:10.1086/175053
[45] Moessner, R.; Jain, B.; Villumsen, J. V., The effect of weak lensing on the angular correlation function of faint galaxies, Mon. Not. Roy. Astron. Soc., 294, 291 (1998) · doi:10.1046/j.1365-8711.1998.01225.x
[46] Asorey, Jacobo; Crocce, Martin; Gaztanaga, Enrique; Lewis, Antony, Recovering 3D clustering information with angular correlations, Mon. Not. Roy. Astron. Soc., 427, 1891 (2012) · doi:10.1111/j.1365-2966.2012.21972.x
[47] Pan-STARRS1 Collaboration; Scolnic, D. M., The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, Astrophys. J., 859, 101 (2018) · doi:10.3847/1538-4357/aab9bb
[48] Amanullah, R.; Mortsell, Edvard; Goobar, A., Correcting for lensing bias in the Hubble diagram, Astron. Astrophys., 397, 819-823 (2003) · doi:10.1051/0004-6361:20021547
[49] Bernstein, J. P., Supernova Simulations and Strategies For the Dark Energy Survey, Astrophys. J., 753, 152 (2012) · doi:10.1088/0004-637X/753/2/152
[50] DES Collaboration; Vincenzi, M., The Dark Energy Survey supernova programme: modelling selection efficiency and observed core-collapse supernova contamination, Mon. Not. Roy. Astron. Soc., 505, 2819-2839 (2021) · doi:10.1093/mnras/stab1353
[51] LSST Dark Energy Science Collaboration; Mandelbaum, Rachel, The LSST Dark Energy Science Collaboration (DESC) Science Requirements DocumentFERMILAB-PUB-18-465-A (2018)
[52] Starobinsky, Alexei A., STOCHASTIC DE SITTER (INFLATIONARY) STAGE IN THE EARLY UNIVERSE, Lect. Notes Phys., 246, 107-126 (1986) · doi:10.1007/3-540-16452-9_6
[53] M. Maggiore, Gravitational Waves: Volume 2: Astrophysics and Cosmology, Oxford University Press (2018) []. · doi:10.1093/oso/9780198570899.001.0001
[54] Demianski, Marek; Piedipalumbo, Ester, Observational tests of the Glavan, Prokopec and Starobinsky model of dark energy, Eur. Phys. J. C, 79, 575 (2019) · doi:10.1140/epjc/s10052-019-7045-4
[55] Barausse, Enrico; Matarrese, Sabino; Riotto, Antonio, The Effect of inhomogeneities on the luminosity distance-redshift relation: Is dark energy necessary in a perturbed Universe?, Phys. Rev. D, 71 (2005) · doi:10.1103/PhysRevD.71.063537
[56] Friedrich, Pavel; Prokopec, Tomislav, Scalar field dark matter in hybrid approach, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.083504
[57] Friedrich, Pavel; Prokopec, Tomislav, Kinetic theory and classical limit for real scalar quantum field in curved spacetime, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.025010
[58] Friedrich, Pavel; Prokopec, Tomislav, Field-theoretic approach to large-scale structure formation, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.103527
[59] I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, Academic Press (2014) []. · doi:10.1016/C2010-0-64839-5
[60] Bonvin, Camille; Clarkson, Chris; Durrer, Ruth; Maartens, Roy; Umeh, Obinna, Cosmological ensemble and directional averages of observables, JCAP, 07 (2015) · doi:10.1088/1475-7516/2015/07/040
[61] Fleury, Pierre; Clarkson, Chris; Maartens, Roy, How does the cosmic large-scale structure bias the Hubble diagram?, JCAP, 03 (2017) · Zbl 1515.85031 · doi:10.1088/1475-7516/2017/03/062
[62] Yoo, Jaiyul; Mitsou, Ermis; Dirian, Yves; Durrer, Ruth, Background photon temperature T̅ : A new cosmological Parameter?, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.063510
[63] Yoo, Jaiyul; Mitsou, Ermis; Grimm, Nastassia; Durrer, Ruth; Refregier, Alexandre, Cosmological Information Contents on the Light-Cone, JCAP, 12 (2019) · Zbl 1542.83069 · doi:10.1088/1475-7516/2019/12/015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.