×

Deep postbuckling and nonlinear bending behaviors of nanobeams with nonlocal and strain gradient effects. (English) Zbl 1416.74075

Summary: In this paper, multi-scale modeling for nanobeams with large deflection is conducted in the framework of the nonlocal strain gradient theory and the Euler-Bernoulli beam theory with exact bending curvature. The proposed size-dependent nonlinear beam model incorporates structure-foundation interaction along with two small scale parameters which describe the stiffness-softening and stiffness-hardening size effects of nanomaterials, respectively. By applying Hamilton’s principle, the motion equation and the associated boundary condition are derived. A two-step perturbation method is introduced to handle the deep postbuckling and nonlinear bending problems of nanobeams analytically. Afterwards, the influence of geometrical, material, and elastic foundation parameters on the nonlinear mechanical behaviors of nanobeams is discussed. Numerical results show that the stability and precision of the perturbation solutions can be guaranteed, and the two types of size effects become increasingly important as the slenderness ratio increases. Moreover, the in-plane conditions and the high-order nonlinear terms appearing in the bending curvature expression play an important role in the nonlinear behaviors of nanobeams as the maximum deflection increases.

MSC:

74M25 Micromechanics of solids
74H55 Stability of dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI

References:

[1] RAFII-TABAR, H., GHAVANLOO, E., and FAZELZADEH, S. A. Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures. Physics Reports, 638, 1-97 (2016) · doi:10.1016/j.physrep.2016.05.003
[2] LIM, C.W., ZHANG, G., and REDDY, J. N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 78, 298-313 (2015) · Zbl 1349.74016 · doi:10.1016/j.jmps.2015.02.001
[3] IMBODEN, M. and MOHANTY, P. Dissipation in nanoelectromechanical systems. Physics Reports, 534, 89-146 (2014) · doi:10.1016/j.physrep.2013.09.003
[4] Arash, B.; Wang, Q., A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes, 57-82 (2014), Berlin · doi:10.1007/978-3-319-01201-8_2
[5] ELTAHER, M. A., KHATER, M. E., and EMAM, S. A. A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Applied Mathematical Modelling, 40, 4109-4128 (2016) · Zbl 1355.65069 · doi:10.1016/j.apm.2015.11.026
[6] WANG, K., WANG, B., and KITAMURA, T. A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mechanica Sinica, 32, 83-100 (2016) · Zbl 1342.74129 · doi:10.1007/s10409-015-0508-4
[7] CORDERO, N. M., FOREST, S., and BUSSO, E. P. Second strain gradient elasticity of nano-objects. Journal of the Mechanics and Physics of Solids, 97, 92-124 (2016) · doi:10.1016/j.jmps.2015.07.012
[8] KRISHNAN, A., DUJARDIN, E., EBBESEN, T., YIANILOS, P., and TREACY, M. Young’s modulus of single-walled nanotubes. Physical Review B, 58, 14013 (1998) · doi:10.1103/PhysRevB.58.14013
[9] WANG, L., ZHENG, Q., LIU, J. Z., and JIANG, Q. Size dependence of the thin-shell model for carbon nanotubes. Physical Review Letters, 95, 105501 (2005) · doi:10.1103/PhysRevLett.95.105501
[10] DIAO, J., GALL, K., and DUNN, M. L. Atomistic simulation of the structure and elastic prop- erties of gold nanowires. Journal of the Mechanics and Physics of Solids, 52, 1935-1962 (2004) · Zbl 1115.74303 · doi:10.1016/j.jmps.2004.03.009
[11] LI, C. and CHOU, T. W. A structural mechanics approach for the analysis of carbon nanotubes. International Journal of Solids and Structures, 40, 2487-2499 (2003) · Zbl 1032.74606 · doi:10.1016/S0020-7683(03)00056-8
[12] LAM, D. C. C., YANG, F., CHONG, A. C. M., WANG, J., and TONG, P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51, 1477-1508 (2003) · Zbl 1077.74517 · doi:10.1016/S0022-5096(03)00053-X
[13] LEI, J., HE, Y., GUO, S., LI, Z., and LIU, D. Size-dependent vibration of nickel cantilever microbeams: experiment and gradient elasticity. AIP Advances, 6, 105202 (2016) · doi:10.1063/1.4964660
[14] TREACY, M. J., EBBESEN, T., and GIBSON, J. Exceptionally high Young’s modulus observed for individual carbon nanotubes. nature, 381, 678-680 (1996) · doi:10.1038/381678a0
[15] AGRAWAL, R., PENG, B., GDOUTOS, E. E., and ESPINOSA, H. D. Elasticity size effects in ZnO nanowires—a combined experimental-computational approach. Nano Letters, 8, 3668-3674 (2008) · doi:10.1021/nl801724b
[16] NATSUKI, T., TANTRAKARN, K., and ENDO, M. Effects of carbon nanotube structures on mechanical properties. Applied Physics A: Materials Science and Processing, 79, 117-124 (2004) · doi:10.1007/s00339-003-2492-y
[17] TANG, C. and ALICI, G. Evaluation of length-scale effects for mechanical behaviour of micro- and nanocantilevers: I, experimental determination of length-scale factors. Journal of Physics D: Applied Physics, 44, 335501 (2011) · doi:10.1088/0022-3727/44/33/335501
[18] RU, C. Q. Effective bending stiffness of carbon nanotubes. Physical Review B, 62, 9973 (2000) · doi:10.1103/PhysRevB.62.9973
[19] WANG, Q. and VARADAN, V. Wave characteristics of carbon nanotubes. International Journal of Solids and Structures, 43, 254-265 (2006) · Zbl 1119.74444 · doi:10.1016/j.ijsolstr.2005.02.047
[20] KULATHUNGA, D. D. T. K., ANG, K. K., and REDDY, J. N. Accurate modeling of buckling of single- and double-walled carbon nanotubes based on shell theories. Journal of Physics: Condensed Matter, 21, 435301 (2009)
[21] ERINGEN, A. C. Nonlocal polar elastic continua. International Journal of Engineering Science, 10, 1-16 (1972) · Zbl 0229.73006 · doi:10.1016/0020-7225(72)90070-5
[22] ERINGEN, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54, 4703-4710 (1983) · doi:10.1063/1.332803
[23] MINDLIN, R. D. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 16, 51-78 (1964) · Zbl 0119.40302 · doi:10.1007/BF00248490
[24] MINDLIN, R. D. Second gradient of strain and surface-tension in linear elasticity. International Journal of Solids and Structures, 1, 417-438 (1965) · doi:10.1016/0020-7683(65)90006-5
[25] TOUPIN, R. A. Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis, 11, 385-414 (1962) · Zbl 0112.16805 · doi:10.1007/BF00253945
[26] MINDLIN, R. D. and TIERSTEN, H. F. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis, 11, 415-448 (1962) · Zbl 0112.38906 · doi:10.1007/BF00253946
[27] ZHOU, S., LI, A., and WANG, B. A reformulation of constitutive relations in the strain gradient elasticity theory for isotropic materials. International Journal of Solids and Structures, 80, 28-37 (2016) · doi:10.1016/j.ijsolstr.2015.10.018
[28] YANG, F., CHONG, A. C. M., LAM, D. C. C., and TONG, P. Couple stress based strain gradient theory for elasticity. {iItnternational Journal of Solids and Structures}, 39, 2731-2743 (2002) · Zbl 1037.74006 · doi:10.1016/S0020-7683(02)00152-X
[29] HADJESFANDIARI, A. R. and DARGUSH, G. F. Couple stress theory for solids. International Journal of Solids and Structures, 48, 2496-2510 (2011) · doi:10.1016/j.ijsolstr.2011.05.002
[30] PEDDIESON, J., BUCHANAN, G. R., and MCNITT, R. P. Application of nonlocal continuum models to nanotechnology. International Journal of Engineering Science, 41, 305-312 (2003) · doi:10.1016/S0020-7225(02)00210-0
[31] WANG, C. M., ZHANG, Y. Y., and HE, X. Q. Vibration of nonlocal Timoshenko beams. Nanotechnology, 18, 105401 (2007) · doi:10.1088/0957-4484/18/10/105401
[32] LIM, C. W. and WANG, C. M. Exact variational nonlocal stress modeling with asymptotic higher- order strain gradients for nanobeams. Journal of Applied Physics, 101, 054312 (2007) · doi:10.1063/1.2435878
[33] HU, Y. G., LIEW, K. M., WANG, Q., HE, X. Q., and YAKOBSON, B. I. Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. Journal of the Mechanics and Physics of Solids, 56, 3475-3485 (2008) · Zbl 1171.74373 · doi:10.1016/j.jmps.2008.08.010
[34] REDDY, J. N. Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. International Journal of Engineering Science, 48, 1507-1518 (2010) · Zbl 1231.74048 · doi:10.1016/j.ijengsci.2010.09.020
[35] SHEN, H. S. and ZHANG, C. L. Nonlocal shear deformable shell model for post-buckling of axially compressed double-walled carbon nanotubes embedded in an elastic matrix. Journal of Applied Mechanics, 77, 041006 (2010) · doi:10.1115/1.4000910
[36] SHEN, H. S. and ZHANG, C. L. Nonlocal beam model for nonlinear analysis of carbon nanotubes on elastomeric substrates. Computational Materials Science, 50, 1022-1029 (2011) · doi:10.1016/j.commatsci.2010.10.042
[37] PENG, X. W., GUO, X. M., LIU, L., and WU, B. J. Scale effects on nonlocal buckling analysis of bilayer composite plates under non-uniform uniaxial loads. Applied Mathematics and Mechanics (English Edition), 36(1), 1-10 (2015) https://doi.org/10.1007/s10483-015-1900-7 · Zbl 1308.74056 · doi:10.1007/s10483-015-1900-7
[38] GHORBANPOUR-ARANI, A., KOLAHDOUZAN, F., and ABDOLLAHIAN, M. Nonlocal buck- ling of embedded magnetoelectroelastic sandwich nanoplate using refined zigzag theory. Applied Mathematics and Mechanics (English Edition), 39(4), 529-546 (2018) https://doi.org/ 10.1007/s10483-018-2319-8 · doi:10.1007/s10483-018-2319-8
[39] PARK, S. K. and GAO, X. L. Bernoulli-Euler beam model based on a modified couple stress theory. Journal of Micromechanics and Microengineering, 16, 2355-2359 (2006) · doi:10.1088/0960-1317/16/11/015
[40] MA, H. M., GAO, X. L., and REDDY, J. N. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. Journal of the Mechanics and Physics of Solids, 56, 3379-3391 (2008) · Zbl 1171.74367 · doi:10.1016/j.jmps.2008.09.007
[41] ŞIMŞEK, M. and REDDY, J. N. Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. International Journal of Engineering Science, 64, 37-53 (2013) · Zbl 1423.74517 · doi:10.1016/j.ijengsci.2012.12.002
[42] REDDY, J. N. and KIM, J. A nonlinear modified couple stress-based third-order theory of func- tionally graded plates. Composite Structures, 94, 1128-1143 (2012) · doi:10.1016/j.compstruct.2011.10.006
[43] KOMIJANI, M., REDDY, J. N., and ESLAMI, M. R. Nonlinear analysis of microstructure- dependent functionally graded piezoelectric material actuators. Journal of the Mechanics and Physics of Solids, 63, 214-227 (2014) · doi:10.1016/j.jmps.2013.09.008
[44] KONG. S., ZHOU, S., NIE, Z., and WANG, K. Static and dynamic analysis of micro beams based on strain gradient elasticity theory. International Journal of Engineering Science, 47, 487-498 (2009) · Zbl 1213.74190 · doi:10.1016/j.ijengsci.2008.08.008
[45] WANG, B., ZHAO, J., and ZHOU, S. A micro scale Timoshenko beam model based on strain gradient elasticity theory. European Journal of Mechanics-A/Solids, 29, 591-599 (2010) · Zbl 1480.74194 · doi:10.1016/j.euromechsol.2009.12.005
[46] WANG, B., DENG, Z. C., and ZHANG, K. Nonlinear vibration of embedded single-walled car- bon nanotube with geometrical imperfection under harmonic load based on nonlocal Timoshenko beam theory. Applied Mathematics and Mechanics (English Edition), 34(3), 269-280 (2013) https://doi.org/10.1007/s10483-013-1669-8 · Zbl 1457.74089 · doi:10.1007/s10483-013-1669-8
[47] MOHAMMADIMEHR, M., FARAHI, M. J., and ALIMIRZAEI, S. Vibration and wave propaga- tion analysis of twisted micro-beam using strain gradient theory. Applied Mathematics and Mechanics (English Edition), 37(10), 1375-1392 (2016) https://doi.org/10.1007/s10483-016-2138-9 · Zbl 1367.74020 · doi:10.1007/s10483-016-2138-9
[48] ZHANG, B., HE, Y., LIU, D., GAN, Z., and SHEN, L. Size-dependent functionally graded beam model based on an improved third-order shear deformation theory. European Journal of Mechanics-A/Solids, 47, 211-230 (2014) · Zbl 1406.74416 · doi:10.1016/j.euromechsol.2014.04.009
[49] LI, L. and HU, Y. Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. International Journal of Engineering Science, 97, 84-94 (2015) · Zbl 1423.74495 · doi:10.1016/j.ijengsci.2015.08.013
[50] LI, L. and HU, Y. Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects. International Journal of Mechanical Sciences, 120, 159-170 (2017) · doi:10.1016/j.ijmecsci.2016.11.025
[51] LI, X., LI, L., HU, Y., DING, Z. C., and DENG, W. Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Composite Structures, 165, 250-265 (2017) · doi:10.1016/j.compstruct.2017.01.032
[52] LI, L. and HU, Y. Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. International Journal of Engineering Science, 107, 77-97 (2016) · Zbl 1423.74496 · doi:10.1016/j.ijengsci.2016.07.011
[53] LI, L., LI, X., and HU, Y. Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. International Journal of Engineering Science, 102, 77-92 (2016) · Zbl 1423.74399 · doi:10.1016/j.ijengsci.2016.02.010
[54] LI, L., HU, Y., and LING, L. Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory. Composite Structures, 133, 1079-1092 (2015) · doi:10.1016/j.compstruct.2015.08.014
[55] SAHMANI, S. and FATTAHI, A. M. Small scale effects on buckling and postbuckling behaviors of axially loaded FGM nanoshells based on nonlocal strain gradient elasticity theory. Applied Mathematics and Mechanics (English Edition), 39(4), 561-580 (2018) https://doi.org/10.1007/s10483-018-2321-8 · Zbl 1390.74152 · doi:10.1007/s10483-018-2321-8
[56] LU, L., GUO, X., and ZHAO, J. Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. International Journal of Engineering Science, 116, 12-24 (2017) · Zbl 1423.74499 · doi:10.1016/j.ijengsci.2017.03.006
[57] LU, L., GUO, X., and ZHAO, J. A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms. International Journal of Engineering Science, 119, 265-277 (2017) · doi:10.1016/j.ijengsci.2017.06.024
[58] LU, L., GUO, X., and ZHAO, J. On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy. International Journal of Engineering Science, 124, 24-40 (2018) · Zbl 1423.74548 · doi:10.1016/j.ijengsci.2017.11.020
[59] SHEN, H. S. A novel technique for nonlinear analysis of beams on two-parameter elastic founda- tions. International Journal of Structural Stability and Dynamics, 11, 999-1014 (2011) · Zbl 1245.74036 · doi:10.1142/S0219455411004440
[60] LI, Z. M. and QIAO, P. On an exact bending curvature model for nonlinear free vibration analysis shear deformable anisotropic laminated beams. Composite Structures, 108, 243-258 (2014) · doi:10.1016/j.compstruct.2013.09.034
[61] WICKERT, J. Non-linear vibration of a traveling tensioned beam. International Journal of Nonlinear Mechanics, 27, 503-517 (1992) · Zbl 0779.73025 · doi:10.1016/0020-7462(92)90016-Z
[62] SHEN, H. S. and ZHANG, J. W. Perturbation analyses for the postbuckling of simply supported rectangular plates under uniaxial compression. Applied Mathematics and Mechanics (English Edition), 9(8), 793-804 (1988) https://doi.org/10.1007/BF02465403 · Zbl 0729.73681 · doi:10.1007/BF02465403
[63] SHEN, H. S., XIANG, Y., and LIN, F. Nonlinear vibration of functionally graded graphene- reinforced composite laminated plates in thermal environments. Computer Methods in Applied Mechanics and Engineering, 319, 175-193 (2017) · Zbl 1439.74140 · doi:10.1016/j.cma.2017.02.029
[64] SHEN, H. S., LIN, F., and XIANG, Y. Nonlinear bending and thermal postbuckling of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations. Engineering Structures, 140, 89-97 (2017) · doi:10.1016/j.engstruct.2017.02.069
[65] SHEN, H. S., HE, X. Q., and YANG, D. Q. Vibration of thermally postbuckled carbon nanotube- reinforced composite beams resting on elastic foundations. International Journal of Non-Linear Mechanics, 91, 69-75 (2017) · doi:10.1016/j.ijnonlinmec.2017.02.010
[66] KIEN, D. K. Postbuckling behavior of beams on two-parameter elastic foundation. International Journal of Structural Stability and Dynamics, 4, 21-43 (2004) · Zbl 1205.74098 · doi:10.1142/S0219455404001082
[67] NAIDU, N. R. and RAO, G. V. Stability behaviour of uniform columns on a class of two parameter elastic foundation. Computers and Structures, 57, 551-553 (1995) · doi:10.1016/0045-7949(94)00636-H
[68] TIMOSHENKO, S. P. and GERE, J. M. Theory of Elastic Stability, McGraw-Hill Book Company, New York (1961)
[69] HORIBE, T. and ASANO, N. Large deflection analysis of beams on two-parameter elastic foun- dation using the boundary integral equation method. JSME International Journal Series A Solid Mechanics and Material Engineering, 44, 231-236 (2011) · doi:10.1299/jsmea.44.231
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.