×

Adjoint Reidemeister torsions of two-bridge knots. (English) Zbl 1510.57011

This paper provides infinitely many supporting examples for a conjecture by D. Gang, S. Kim, and the author [D. Gang et al., Adv. Theor. Math. Phys. 25, No. 7, 1819–1845 (2021; Zbl 1498.81105)]. They conjectured that if the \(\mathrm{SL}_2(\mathbb{C})\)-character variety for a hyperbolic \(3\)-manifold with boundary consists of \(1\)-dimensional components then the inverse sum of the adjoint Reidemeister torsion for any slope on the boundary torus equals zero. Here the inverse sum of the adjoint Reidemeister torsion runs over a generic level set of the trace function of a given slope on the \(\mathrm{SL}_2(\mathbb{C})\)-character variety. The supporting examples of this paper are given by hyperbolic two-bridge knot exteriors and their meridian slopes. This paper calls the vanishing sum the vanishing identity of the adjoint Reidemeister torsion.
This paper has two main results. In the first main result, the adjoint Reidemeister torsion for a hyperbolic two-bridge knot exterior and the meridian slope is expressed as a rational function on the \(\mathrm{SL}_2(\mathbb{C})\)-character variety. That function is given by the defining polynomial of the character variety, called the Riley polynomial of a two-bridge knot. The author also shows that the inverse sum of the adjoint Reidemeister torsion on a generic level set of the trace function of the meridian turns into zero as the second main result. The second result is derived from the Euler-Jacobi theorem when we think of the adjoint Reidemeister torsion as a rational function on the \(\mathrm{SL}_2(\mathbb{C})\)-character variety for a hyperbolic two-bridge knot exterior. This paper also touches on the inverse sum of the adjoint Reidemeister torsion for non-hyperbolic two-bridge knots and the meridian slope. According to a numerical computation by the author, the inverse sum for a non-hyperbolic two-bridge knot over a generic level set should be \(\pm 2\).

MSC:

57K10 Knot theory
57K31 Invariants of 3-manifolds (including skein modules, character varieties)
57K32 Hyperbolic 3-manifolds

Citations:

Zbl 1498.81105

References:

[1] Benini, Francesco, Rotating black hole entropy from M5-branes, J. High Energy Phys., 057, 39 pp. (2020) · Zbl 1435.83071 · doi:10.1007/jhep03(2020)057
[2] Burde, Gerhard, Knots, De Gruyter Studies in Mathematics, xii+559 pp. (2003), Walter de Gruyter & Co., Berlin · Zbl 1009.57003
[3] Culler, Marc, Varieties of group representations and splittings of \(3\)-manifolds, Ann. of Math. (2), 109-146 (1983) · Zbl 0529.57005 · doi:10.2307/2006973
[4] J. Dubois. Torsion de Reidemeister non ab\'elienne et forme volume sur l’espace des repr\'esentations du groupe d’un noeud. PhD thesis, Universit\'e Blaise Pascal-Clermont-Ferrand II, 2003.
[5] Dubois, J\'{e}r\^ome, Non abelian twisted Reidemeister torsion for fibered knots, Canad. Math. Bull., 55-71 (2006) · Zbl 1101.57010 · doi:10.4153/CMB-2006-006-0
[6] Dubois, J\'{e}r\^ome, Non-abelian Reidemeister torsion for twist knots, J. Knot Theory Ramifications, 303-341 (2009) · Zbl 1207.57011 · doi:10.1142/S0218216509006951
[7] Gang, Dongmin, Precision microstate counting for the entropy of wrapped M5-branes, J. High Energy Phys., 164, 42 pp. (2020) · Zbl 1435.81161 · doi:10.1007/jhep03(2020)164
[8] D. Gang, S. Kim, and S. Yoon, Adjoint Reidemeister torsions from wrapped M5-branes, 1911.10718. · Zbl 1498.81105
[9] Griffiths, Phillip, Principles of algebraic geometry, Pure and Applied Mathematics, xii+813 pp. (1978), Wiley-Interscience [John Wiley & Sons], New York · Zbl 0836.14001
[10] Gukov, Sergei, Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial, Comm. Math. Phys., 577-627 (2005) · Zbl 1115.57009 · doi:10.1007/s00220-005-1312-y
[11] Kitano, Teruaki, Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math., 431-442 (1996) · Zbl 0863.57001
[12] Ohtsuki, Tomotada, On the Kashaev invariant and the twisted Reidemeister torsion of two-bridge knots, Geom. Topol., 853-952 (2015) · Zbl 1332.57013 · doi:10.2140/gt.2015.19.853
[13] Porti, Joan, Torsion de Reidemeister pour les vari\'{e}t\'{e}s hyperboliques, Mem. Amer. Math. Soc., x+139 pp. (1997) · Zbl 0881.57020 · doi:10.1090/memo/0612
[14] Riley, Robert, Parabolic representations of knot groups. I, Proc. London Math. Soc. (3), 217-242 (1972) · Zbl 0229.55002 · doi:10.1112/plms/s3-24.2.217
[15] Riley, Robert, Nonabelian representations of \(2\)-bridge knot groups, Quart. J. Math. Oxford Ser. (2), 191-208 (1984) · Zbl 0549.57005 · doi:10.1093/qmath/35.2.191
[16] Schubert, Horst, \"{U}ber eine numerische Knoteninvariante, Math. Z., 245-288 (1954) · Zbl 0058.17403 · doi:10.1007/BF01181346
[17] Sikora, Adam S., Character varieties, Trans. Amer. Math. Soc., 5173-5208 (2012) · Zbl 1291.14022 · doi:10.1090/S0002-9947-2012-05448-1
[18] Tran, Anh T., Twisted Alexander polynomials with the adjoint action for some classes of knots, J. Knot Theory Ramifications, 1450051, 10 pp. (2014) · Zbl 1305.57031 · doi:10.1142/S0218216514500515
[19] Tran, Anh T., Twisted Alexander polynomials of genus one two-bridge knots, Kodai Math. J., 86-97 (2018) · Zbl 1396.57035 · doi:10.2996/kmj/1521424825
[20] Turaev, Vladimir, Introduction to combinatorial torsions, Lectures in Mathematics ETH Z\"{u}rich, viii+123 pp. (2001), Birkh\"{a}user Verlag, Basel · Zbl 0970.57001 · doi:10.1007/978-3-0348-8321-4
[21] Weil, Andr\'{e}, Remarks on the cohomology of groups, Ann. of Math. (2), 149-157 (1964) · Zbl 0192.12802 · doi:10.2307/1970495
[22] Witten, Edward, Quantum field theory and the Jones polynomial, Comm. Math. Phys., 351-399 (1989) · Zbl 0667.57005
[23] Yamaguchi, Yoshikazu, A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion, Ann. Inst. Fourier (Grenoble), 337-362 (2008) · Zbl 1158.57027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.