×

Effect of interface model parameters on the numerical response of a FE model for predicting the FRCM-to-masonry bond. (English) Zbl 07854268

Summary: Fabric-reinforced cementitious matrix (FRCM) materials are increasingly common for strengthening existing masonry structures. The constitutive behaviour of these materials is complex to model due to the inner complex mechanisms that develop in composite mechanics, such as stress transfer between matrix and fabric, mortar cracking, friction at the matrix-to-fabric interface, and bonding with the substrate. This paper aims to address these phenomena by presenting a numerical approach able to predict the bond behaviour of FRCM-to-masonry systems through the use of simple truss elements and nonlinear springs to simulate the fabric-to-matrix and composite-to-substrate interactions. The model was implemented in an open-source environment and allowed direct sensitivity analysis to assess the role of the constitutive variables. The comparisons between the results of the numerical approach and experimental responses show that the proposed methodology is an effective and easy tool to predict the mechanical behaviour of FRCM composites, with a reduced computational effort.

MSC:

74E30 Composite and mixture properties
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Nanni, A., A new tool for concrete and masonry repair, Concr. Int., 34, 4, 1-7, 2012
[2] Amato, G., Chen, J., D’Anna, J., La Mendola, L., Minafò, G.: Frcm systems for strengthening masonry structures. In: 8th Biennial Conference on Advanced Composites in Construction, ACIC 2017, pp. 244-249 (2017). NetComposites Limited
[3] Crisci, G., Ceroni, F., Lignola, G.: Efficiency of frcm systems for strengthening of masonry walls. In: AIP Conference Proceedings, vol. 2293, p. 240008 (2020). AIP Publishing LLC
[4] Meriggi, P.; De Santis, S.; Fares, S.; de Felice, G., Design of the shear strengthening of masonry walls with fabric reinforced cementitious matrix, Constr. Build. Mater., 279, 2021
[5] Minafò, G.; La Mendola, L., Experimental investigation on the effect of mortar grade on the compressive behaviour of frcm confined masonry columns, Compos. B Eng., 146, 1-12, 2018
[6] Aiello, MA; Bencardino, F.; Cascardi, A.; D’Antino, T.; Fagone, M.; Frana, I.; La Mendola, L.; Lignola, GP; Mazzotti, C.; Micelli, F., Masonry columns confined with fabric reinforced cementitious matrix (FRCM) systems: A round robin test, Constr. Build. Mater., 298, 2021
[7] Colombi, P.; D’Antino, T., Analytical assessment of the stress-transfer mechanism in FRCM composites, Compos. Struct., 220, 961-970, 2019
[8] Wang, F.; Kyriakides, N.; Chrysostomou, C.; Eleftheriou, E.; Votsis, R.; Illampas, R., Experimental research on bond behaviour of fabric reinforced cementitious matrix composites for retrofitting masonry walls, Int. J. Concr. Struct. Mater., 15, 1, 1-17, 2021
[9] Ascione, L.; de Felice, G.; De Santis, S., A qualification method for externally bonded fibre reinforced cementitious matrix (frcm) strengthening systems, Compos. B Eng., 78, 497-506, 2015
[10] Carozzi, FG; Arboleda, D.; Poggi, C.; Nanni, A., Direct shear bond tests of fabric-reinforced cementitious matrix materials, J. Compos. Constr., 24, 1, 04019061, 2020
[11] AC434-13, I.: Acceptance criteria for masonry and concrete strengthening using fiber-reinforced cementitious matrix (FRCM) composite systems. ICC-Evaluation Service, Whittier, CA (2013)
[12] CSLP: Italian guideline for the identification, qualification and acceptance control of fibre reinforced cementitious matrix (FRCM) used for the structural consolidation of existing constructions (2018)
[13] De Felice, G.; Aiello, MA; Caggegi, C.; Ceroni, F.; De Santis, S.; Garbin, E.; Gattesco, N.; Hojdys, Ł.; Krajewski, P.; Kwiecień, A., Recommendation of rilem technical committee 250-csm: Test method for textile reinforced mortar to substrate bond characterization, Mater. Struct., 51, 4, 1-9, 2018
[14] Grande, E.; Milani, G., Interface modeling approach for the study of the bond behavior of FRCM strengthening systems, Compos. B Eng., 141, 221-233, 2018
[15] Bertolesi, E.; Grande, E.; Milani, G., Numerical modeling of the bond behaviour of frcm systems externally applied to masonry substrates, J. Build. Pathol. Rehabilit., 4, 1, 1-11, 2019
[16] Nerilli, F.; Marfia, S.; Sacco, E., Micromechanical modeling of the constitutive response of frcm composites, Constr. Build. Mater., 236, 2020
[17] Tamborrino, O., Perrone, D., Leone, M., et al.: Numerical modelling of shear bond tests on externally strengthened masonry specimens. In: 8th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, COMPDYN 2021, vol. 2021 (2021). National Technical University of Athens
[18] Grande, E.; Milani, G., Procedure for the numerical characterization of the local bond behavior of FRCM, Compos. Struct., 258, 2021
[19] Dalalbashi, A.; Ghiassi, B.; Oliveira, DV, Textile-to-mortar bond behavior: An analytical study, Constr. Build. Mater., 282, 2021
[20] Zhu, M.; McKenna, F.; Scott, MH, Openseespy: Python library for the opensees finite element framework, SoftwareX, 7, 6-11, 2018
[21] Scott, MH; Haukaas, T., Software framework for parameter updating and finite-element response sensitivity analysis, J. Comput. Civ. Eng., 22, 5, 281-291, 2008
[22] Mazzucco, G.; D’Antino, T.; Pellegrino, C.; Salomoni, V., Three-dimensional finite element modeling of inorganic-matrix composite materials using a mesoscale approach, Compos. B Eng., 143, 75-85, 2018
[23] e Trasporti 17 gennaio 2018, D.M.I.: Norme tecniche per le costruzioni (NTC 2018) (2018)
[24] Van Rossum, G., Drake, F.L.: Python 3 reference manual (2009)
[25] Harris, CR; Millman, KJ; van der Walt, SJ; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, NJ; Kern, R.; Picus, M.; Hoyer, S.; van Kerkwijk, MH; Brett, M.; Haldane, A.; del Río, JF; Wiebe, M.; Peterson, P.; Gérard-Marchant, P.; Sheppard, K.; Reddy, T.; Weckesser, W.; Abbasi, H.; Gohlke, C.; Oliphant, TE, Array programming with NumPy, Nature, 585, 7825, 357-362, 2020
[26] Hunter, JD, Matplotlib: A 2d graphics environment, Comput. Sci. Eng., 9, 3, 90-95, 2007
[27] Kleiber, M., Hien, T.D., Antúnez, H., Kowalczyk, P.: Parameter sensitivity in nonlinear mechanics: Theory and finite element computations (1997)
[28] Türkmen, ÖS; de Vries, BT; Wijte, SN, Mechanical characterization and out-of-plane behavior of fabric-reinforced cementitious matrix overlay on clay brick masonry, Civil Eng. Des., 1, 5-6, 131-147, 2019
[29] Carozzi, FG; Bellini, A.; D’Antino, T.; de Felice, G.; Focacci, F.; Hojdys, L.; Laghi, L.; Lanoye, E.; Micelli, F.; Panizza, M.; Poggi, C., Experimental investigation of tensile and bond properties of carbon-frcm composites for strengthening masonry elements, Compos. B Eng., 128, 100-119, 2017
[30] Bellini, A.; Shahrezab, SK; Mazzotti, C., Cyclic bond behavior of frcm composites applied on masonry substrate, Compos. B, 169, 189-199, 2019
[31] Calabrese, AS; D’Antino, T.; Colombi, P.; Poggi, C., Study of the influence of interface normal stresses on the bond behavior of frcm composites using direct shear and modified beam tests, Constr. Build. Mater., 262, 2020
[32] Leone, M., Aiello, M.A., Balsamo, A., Carozzi, F.G., Ceroni, F., Corradi, M., Gams, M., Garbin, E., Gattesco, N., Krajewski, P., Mazzotti, C., D., O., Papanicolaou, C., Ranocchiai, G., F., R., Saenger, D.: Glass fabric reinforced cementitious matrix: Tensile properties and bond performance on masonry substrate. Composites Part B: Engineering 127, 196-214 (2017). doi:10.1016/j.compositesb.2017.06.028
[33] Zaydan, M.; Caggegi, C.; Michel, M.; Curtil, L., Experimental analysis on tensile and bond properties of basalt-ettringite trm for strengthening masonry structures, Eur. J. Environ. Civ. Eng., 26, 13, 6354-6377, 2022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.