×

Second-order cone programming formulations for a class of problems in structural optimization. (English) Zbl 1274.74235

Summary: We provide efficient and easy to implement formulations for two problems in structural optimization as second-order cone programming (SOCP) problems based on the minimum compliance method and derived using the principle of complementary energy. In truss optimization both single and multiple loads (where we optimize the worst-case compliance) are considered. By using a heuristic which is based on the SOCP duality we can consider a simple ground structure and add only the members which improve the compliance of the structure. It is also shown that thickness optimization is a problem similar to truss optimization. Examples are given to illustrate the method developed in this paper.

MSC:

74P05 Compliance or weight optimization in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
90C30 Nonlinear programming

References:

[1] Achtziger W (1996) Truss topology optimization including bar properties different for tension and compression. Struct Multidiscipl Optim 12:63–74 · doi:10.1007/BF01270445
[2] Achtziger W (2007) On simultaneous optimization of truss geometry and topology. Struct Multidiscipl Optim 33:285–304 · Zbl 1245.90112 · doi:10.1007/s00158-006-0092-0
[3] Andersen E, Roos C, Terlaky T (2003) On implementing a primal-dual interior-point method for conic quadratic optimization. Math Program Series B 95:249–277 · Zbl 1030.90137 · doi:10.1007/s10107-002-0349-3
[4] Beckers M (1999) Topology optimization using a dual method with discrete variables. Struct Optim 17:14–24 · doi:10.1007/BF01197709
[5] Ben-Tal A, Bendsøe M (1993) A new method for optimal truss design topology design. SIAM J Optim 3:322–358 · Zbl 0780.90076 · doi:10.1137/0803015
[6] Ben-Tal A, Nemirovski A (1997) Robust truss topology design via semidefinite programming. SIAM J Optim 7:991–1016 · Zbl 0899.90133 · doi:10.1137/S1052623495291951
[7] Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization. MPS-SIAM series on optimization. SIAM, Philadelphia · Zbl 0986.90032
[8] Bendsøe M (1995) Optimization of structural topology, shape and material. Springer, Berlin · Zbl 0822.73001
[9] Bendsøe M, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224 · Zbl 0671.73065 · doi:10.1016/0045-7825(88)90086-2
[10] Bendsøe M, Ben-Tal A, Zowe J (1994) Optimization methods for truss geometry and topology design. Struct Optim 7:141–159 · doi:10.1007/BF01742459
[11] Chen YM, Bhaskar A, Keane A (2002) A parallel nodal-based evolutionary structural optimization algorithm. Struct Multidiscipl Optim 23:241–251 · doi:10.1007/s00158-002-0182-6
[12] CIMNE (2007) GiD Version 8.0. Reference manual
[13] Dorn W, Gomory R, Greenberg H (1964) Automatic design of optimal structures. J Mech 3:25–52
[14] Gilbert M, Tyas A (2003) Layout optimization of large-scale pin jointed frames. Eng Comput 20:1044–1064 · Zbl 1063.74529 · doi:10.1108/02644400310503017
[15] Hagishita T, Ohsaki M (2009) Topology optimization of trusses by growing ground structure method. Struct Multidiscipl Optim 37:377–393 · doi:10.1007/s00158-008-0237-4
[16] Jarre F, Kocvara M, Zowe J (1998) Optimal truss design by interior point methods. SIAM J Optim 8:1084–1117 · Zbl 0912.90231 · doi:10.1137/S1052623496297097
[17] Kirsch U (1989) Optimal topologies of truss structures. Comput Methods Appl Mech Eng 72:15–28 · Zbl 0675.73058 · doi:10.1016/0045-7825(89)90119-9
[18] Kocvara M, Outrata J (2006) Effective reformulations of the truss topology design problem. Optim Eng 7:201–219 · Zbl 1175.74068 · doi:10.1007/s11081-006-6839-z
[19] Kocvara M, Stingl M (2003) Pennon a code for convex nonlinear and semidefinite programming. Optim Methods Softw 18:317–333 · Zbl 1037.90003 · doi:10.1080/1055678031000098773
[20] Lam Y, Manickarajah D, Bertolini A (2000) Effective reformulations of the truss topology design problem. Finite Elem Anal Des 34:159–174 · Zbl 1064.74639 · doi:10.1016/S0168-874X(99)00036-0
[21] Lobo M, Vandenberghe L, Boyd S, Lebret H (1998) Applications of second-order cone programming. Linear Algebra Appl 284:193–228 · Zbl 0946.90050 · doi:10.1016/S0024-3795(98)10032-0
[22] Makrodimopoulos A, Bhaskar A, Keane A (2008) A formulation for large-scale truss optimization. In: CD-ROM proceedings of the 6th GRACM international congress on computational mechanics, Thessaloniki, 19–21 June 2008
[23] Martinez P, Marti P, Querin O (2007) Growth method for size, topology, and geometry optimization of truss structures. Struct Multidiscipl Optim 33:13–26 · doi:10.1007/s00158-006-0043-9
[24] Michell A (1904) The limits of economy of material in frame-structures. Philos Mag 8:589–597 · JFM 35.0828.01 · doi:10.1080/14786440409463229
[25] MOSEK ApS (2007) The MOSEK optimization tools manual. Version 5.0, Revision 60
[26] Qing L, GP GS, Xie Y (2001) Evolutionary thickness design with stiffness maximization and stress minimization criteria. Int J Numer Methods Eng 52:979–995 · Zbl 1027.74051 · doi:10.1002/nme.241
[27] Rozvany G (2001) Stress ratio and compliance based methods in topology optimization–a critical review. Struct Multidiscipl Optim 21:109–119 · doi:10.1007/s001580050175
[28] Rozvany G, Zhou M (1991) The COC algorithm, Part I: cross-section optimization or sizing. Comput Methods Appl Mech Eng 89:281–308 · doi:10.1016/0045-7825(91)90045-8
[29] Sturm J (1999) Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim Methods Softw 11–12:625–653 · Zbl 0973.90526 · doi:10.1080/10556789908805766
[30] Tütüncü R, Toh K, Todd M (2003) Solving semidefinite-quadratic-linear programs using SDPT3. Math Program 95:189–217 · Zbl 1030.90082 · doi:10.1007/s10107-002-0347-5
[31] Xie Y, Steven G (1997) Evolutionary structural optimization. Springer, Berlin · Zbl 0898.73003
[32] Zhou M, Rozvany G (1991) The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336 · doi:10.1016/0045-7825(91)90046-9
[33] Zhou M, Rozvany G (1996) An improved approximation technique for the dcoc method of sizing optimization. Comput Struct 60:763–769 · Zbl 0919.73094 · doi:10.1016/0045-7949(95)00436-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.