×

Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf optimization and adaptive differential evolution. (English) Zbl 1523.74096

Summary: A hybrid adaptive optimization algorithm based on integrating grey wolf optimization into adaptive differential evolution with fully stressed design (FSD) local search is presented in this article. Hybrid reproduction and control parameter adaptation strategies are employed to increase the performance of the algorithm. The proposed algorithm, called fully stressed design-grey wolf-adaptive differential evolution (FSD-GWADE), is demonstrated to tackle a variety of truss optimization problems. The problems have mixed continuous/discrete design variables that are assigned as simultaneous topology, shape and sizing design variables. FSD-GWADE provides competitive results and gives superior results at a higher success rate than the previous FSD-based algorithm.

MSC:

74P05 Compliance or weight optimization in solid mechanics
90C59 Approximation methods and heuristics in mathematical programming
90C90 Applications of mathematical programming

Software:

GWO; JADE
Full Text: DOI

References:

[1] Ahrari, A.; Atai, A. A., Fully Stressed Design Evolution Strategy for Shape and Size Optimization of Truss Structures, Computers and Structures, 123, 58-67 (2013) · doi:10.1016/j.compstruc.2013.04.013
[2] Ahrari, A.; Atai, A. A.; Deb, K., Simultaneous Topology, Shape and Size Optimization of Truss Structures by Fully Stressed Design Based on Evolution Strategy, Engineering Optimization, 47, 8, 1063-1084 (2015) · doi:10.1080/0305215X.2014.947972
[3] Ahrari, A.; Deb, K., An Improved Fully Stressed Design Evolution Strategy for Layout Optimization of Truss Structures, Computers & Structures, 164, 127-144 (2016) · doi:10.1016/j.compstruc.2015.11.009
[4] Ayvaz, M. T.; Kayhan, A. H.; Ceylan, H.; Gurarslan, G., Hybridizing the Harmony Search Algorithm with a Spreadsheet ‘Solver’ for Solving Continuous Engineering Optimization Problems, Engineering Optimization, 41, 12, 1119-1144 (2009) · doi:10.1080/03052150902926835
[5] Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V., Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems, IEEE Transactions on Evolutionary Computation, 10, 6, 646-657 (2006) · doi:10.1109/TEVC.2006.872133
[6] Cagnina, L. C.; Esquivel, S. C.; Coello, C. A. C., Solving Constrained Optimization Problems with a Hybrid Particle Swarm Optimization Algorithm, Engineering Optimization, 43, 8, 843-866 (2011) · doi:10.1080/0305215X.2010.522707
[7] Deb, K.; Gulati, S., Design of Truss-Structures for Minimum Weight Using Genetic Algorithms, Finite Elements in Analysis and Design, 37, 5, 447-465 (2001) · Zbl 1015.74040 · doi:10.1016/S0168-874X(00)00057-3
[8] Gallagher, R. H., Optimum Structural Design: Theory And Applications (1973), Chichester: Wiley, Chichester · Zbl 0291.73049
[9] Holland, J. H., Adaptation in Natural And Artificial Systems (1975), Cambridge, MA: MIT Press, Cambridge, MA · Zbl 0317.68006
[10] Hwang, S. F.; He, R. S., Engineering Optimization Using a Real-Parameter Genetic-Algorithm-Based Hybrid Method, Engineering Optimization, 38, 7, 833-852 (2006) · doi:10.1080/03052150600882181
[11] Li, J. P., Truss Topology Optimization Using an Improved Species-Conserving Genetic Algorithm, Engineering Optimization, 47, 1, 107-128 (2014) · doi:10.1080/0305215X.2013.875165
[12] Liu, J.; Lampinen, J., A Fuzzy Adaptive Differential Evolution Algorithm, Soft Computing, 9, 6, 448-462 (2005) · Zbl 1076.93513 · doi:10.1007/s00500-004-0363-x
[13] Mirjalili, S.; Mirjalili, S. M.; Lewis, A., Grey Wolf Optimizer, Advances in Engineering Software, 69, 46-61 (2014) · doi:10.1016/j.advengsoft.2013.12.007
[14] Noii, N.; Aghayan, I.; Hajirasouliha, I.; Kunt, M. M., A New Hybrid Method for Size and Topology Optimization of Truss Structures Using Modified ALGA and QPGA, Journal Of Civil Engineering And Management, 23, 2, 252-262 (2017) · doi:10.3846/13923730.2015.1075420
[15] Noilublao, N.; Bureerat, S., Simultaneous Topology, Shape and Sizing Optimisation of a Three-Dimensional Slender Truss Tower Using Multiobjective Evolutionary Algorithms, Computers & Structures, 89, 23-24, 2531-2538 (2011) · doi:10.1016/j.compstruc.2011.08.010
[16] Papadrakakis, Manolis; Lagaros, Nikos; Plevris, Vagelis, Multi-Objective Optimization of Skeletal Structures Under Static and Seismic Loading Conditions, Engineering Optimization, 34, 6, 645-669 (2002) · Zbl 1079.90599 · doi:10.1080/03052150215716
[17] Pholdee, N.; Bureerat, S., Hybrid Real-Code Population-Based Incremental Learning and Approximate Gradients for Multi-Objective Truss Design, Engineering Optimization, 46, 8, 1032-1051 (2014) · doi:10.1080/0305215X.2013.823194
[18] Price, K. V.1997. “Differential Evolution vs. the Functions of the 2nd ICEO.” In Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC ’97), 153-57. Piscataway, NJ: IEEE.
[19] Qin, A. K., and Suganthan, P. N.. 2005. “Self-Adaptive Differential Evolution Algorithm for Numerical Optimization.” 2005 IEEE Congress on Evolutionary Computation, 2, 1785-1791. IEEE.
[20] Rahami, H.; Kaveh, A.; Gholipour, Y., Sizing, Geometry and Topology Optimization of Trusses via Force Method and Genetic Algorithm, Engineering Structures, 30, 9, 2360-2369 (2008) · doi:10.1016/j.engstruct.2008.01.012
[21] Rajan, S. D., Sizing, Shape, and Topology Design Optimization of Trusses Using Genetic Algorithm, Journal of Structural Engineering, 121, 10, 1480-1487 (1995) · doi:10.1061/(ASCE)0733-9445(1995)121:10(1480)
[22] Razani, R., Behavior of Fully Stressed Design of Structures and Its Relationshipto Minimum-Weight Design, AIAA Journal, 3, 12, 2262-2268 (1965) · doi:10.2514/3.3355
[23] Šešok, D.; Belevičius, R., Global Optimization of Trusses with a Modified Genetic Algorithm, Journal Of Civil Engineering And Management, 14, 3, 147-154 (2008) · doi:10.3846/1392-3730.2008.14.10
[24] Storn, R., and Price, K.. 1995. “Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces.” Vol. 3. ICSI Berkeley. · Zbl 0888.90135
[25] Storn, R., and Price, K.. 1996. “Minimizing the Real Functions of the ICEC’96 Contest by Differential Evolution.” In Proceedings of 1996 IEEE International Conference on Evolutionary Computation (ICEC ’96), 842-844. Piscataway, NJ: IEEE.
[26] Sun, R.; Liu, D.; Xu, T.; Zhang, H.; Zuo, W., New Adaptive Technique of Kirsch Method for Structural Reanalysis, AIAA Journal, 52, 3, 486-495 (2014) · doi:10.2514/1.J051597
[27] Tanabe, R., and Fukunaga, A.. 2013. “Success-History Based Parameter Adaptation for Differential Evolution.” In 2013 IEEE Congress on Evolutionary Computation, 71-78. IEEE.
[28] Tanabe, R., and Fukunaga, A. S.. 2014. “Improving the Search Performance of SHADE Using Linear Population Size Reduction.” 2014 IEEE Congress on Evolutionary Computation (CEC), 1658-1665. Piscataway, NJ: IEEE.
[29] Teo, J., Exploring Dynamic Self-Adaptive Populations in Differential Evolution, Soft Computing, 10, 8, 673-686 (2006) · doi:10.1007/s00500-005-0537-1
[30] Wu, C. Y.; Tseng, K. Y., Truss Structure Optimization Using Adaptive Multi-Population Differential Evolution, Structural and Multidisciplinary Optimization, 42, 4, 575-590 (2010) · doi:10.1007/s00158-010-0507-9
[31] Zhang, J.; Sanderson, A. C., JADE: Adaptive Differential Evolution with Optional External Archive, IEEE Transactions on Evolutionary Computation, 13, 5, 945-958 (2009) · doi:10.1109/TEVC.2009.2014613
[32] Zidani, H.; Pagnacco, E.; Sampaio, R.; Ellaia, R.; Souza de Cursi, J. E., Multi-Objective Optimization by a New Hybridized Method: Applications to Random Mechanical Systems, Engineering Optimization, 45, 8, 917-939 (2013) · doi:10.1080/0305215X.2012.713355
[33] Zuo, W.; Bai, J.; Li, B., A Hybrid OC-GA Approach for Fast And Global Truss Optimization with Frequency Constraints, Applied Soft Computing, 14, 528-535 (2014) · doi:10.1016/j.asoc.2013.09.002
[34] Zuo, W.; Saitou, K., Multi-material Topology Optimization Using Ordered SIMP Interpolation, Structural And Multidisciplinary Optimization, 55, 2, 477-491 (2017) · doi:10.1007/s00158-016-1513-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.