×

Isogeometric-analysis-based stiffness spreading method for truss layout optimization. (English) Zbl 1507.74277

Summary: A novel isogeometric analysis-based stiffness spreading method (IGA-based SSM) is proposed for the truss layout optimization design within a continuum, where the topology, geometry, and cross-sectional areas of the truss elements can be simultaneously optimized. The IGA-based SSM based on energy conservation is employed to obtain the spreading stiffness matrices of the truss elements that are embedded in weak IGA background grids. The IGA background grids are constructed using high-order continuous isogeometric elements that can overcome the limitation of discontinuous sensitivity derived by traditional \(C^0\) elements. Because the sensitivity required for the optimization can be obtained analytically, gradient-based optimization algorithms can be easily implemented. To verify the effectiveness of the IGA-based SSM for truss layout optimization design, typical illustrative examples are used, considering the compliance minimization optimization problem. The proposed method can provide a continuous and smooth sensitivity field and overcome the numerical inaccuracy caused by interpolation methods, such as the radial basis function. The different background mesh sizes, initial layouts, and orders \(p\) of nonuniform rational B-splines basis functions are investigated in truss layout optimization. The results indicate that the selection of the appropriate background mesh size can avoid the problem of discontinuous truss connections, \(C^1\)-continuous isogeometric elements can provide better optimization designs with a lower computational cost, and the proposed method can provide a clear layout for different initial layouts. Moreover, the spatial truss layout optimization problem and the min-max displacement optimization problem are also studied to further verify the effectiveness of the proposed method. Finally, the proposed method is extended to solve the concentrated force diffusion problem that widely exists in the interstage adapters of launch vehicles by adding the variance constraint of reaction forces. The results indicate that the proposed method can obtain required concentrated force diffusion results with reasonable stiffness distributions.

MSC:

74P10 Optimization of other properties in solid mechanics
74S22 Isogeometric methods applied to problems in solid mechanics

Software:

GRAND
Full Text: DOI

References:

[1] Prager, W.; Rozvany, G. I.N., Optimization of structural geometry, Dyn. Syst., 265-293 (1977)
[2] Stolpe, M., Truss optimization with discrete design variables: a critical review, Struct. Multidiscip. Optim., 53, 2, 349-374 (2016)
[3] A.G.M. Michell, The limits of economy of material in frame-structures, Philos. Mag. Ser. VI, 8 (47), 589-597. · JFM 35.0828.01
[4] Hemp, W. S., Optimum Structures (1973), Clarendon: Clarendon Oxford, U.K
[5] Rozvany, G. I.N., Structural Design Via Optimality Criteria (1989), Kluwer: Kluwer Dordrecht, The Netherlands · Zbl 0687.73079
[6] Rozvany, G. I.N.; Bendsœ, M. P.; Kirsch, U., Layout optimization of structures, Appl. Mech. Rev., 48, 2, 41-119 (1995)
[7] Dorn, W. S.; Gomory, R. E.; Greenberg, H. J., Automatic design of optimal structures, J. Méc., 3, 25-52 (1964)
[8] Bental, A.; Bendsø e, M. P., A new method for optimal truss topology design, SIAM J. Optim., 3, 2, 322-358 (1993) · Zbl 0780.90076
[9] Bendsøe, M. P.; Bental, A.; Zowe, J., Optimization methods for truss geometry and topology design, Struct. Optim., 7, 3, 141-159 (1994)
[10] Sokó, T., A 99 line code for discretized Michell truss optimization, Mathematica, 43, 2, 181-190 (2011) · Zbl 1274.74008
[11] Zegard, T.; Paulino, G. H., GRAND - Ground structure based topology optimization for arbitrary 2D domains using MATLAB, Struct. Multidiscip. Optim., 50, 5, 861-882 (2014)
[12] Zegard, T.; Paulino, G. H., GRAND3 - Ground structure based topology optimization for arbitrary 3D domains using MATLAB, Struct. Multidiscip. Optim., 52, 6, 1161-1184 (2014)
[13] Gao, G.; Liu, Z. Y.; Li, Y. B., A new method to generate the ground structure in truss topology optimization, Eng. Optim., 49, 2, 235-251 (2017)
[14] Asadpoure, A.; Guest, J. K.; Valdevit, L., Incorporating fabrication cost into topology optimization of discrete structures and lattices, Struct. Multidiscip. Optim., 51, 2, 385-396 (2015)
[15] Ramos, A. S.; Paulino, G. H., Filtering structures out of ground structures-a discrete filtering tool for structural design optimization, Struct. Multidiscip. Optim., 54, 1, 95-116 (2016)
[16] Sanders, E. D.; Ramos Jr., A. S.; Paulino, G. H., A maximum filter for the ground structure method: An optimization tool to harness multiple structural designs, Eng. Struct., 151, 235-252 (2017)
[17] Sanders, E. D.; Ramos, A. S.; Paulino, G. H., Topology optimization of tension-only cable nets under finite deformations, Struct. Multidiscip. Optim., 62, 2, 559-579 (2020)
[18] Fumio, N.; Duggal, R., Shape optimum design of trusses under multiple loading, Int. J. Solids Struct., 26, 1, 17-27 (1990)
[19] Bendsøe, M. P.; Bental, A.; Zowe, J., Optimization methods for truss geometry and topology design, Struct. Optim., 7, 3, 141-159 (1994)
[20] Achtziger, W., On simultaneous optimization of truss geometry and topology, Struct. Multidiscip. Optim., 33, 4-5, 285-304 (2007) · Zbl 1245.90112
[21] Rule, W. K., Automatic truss design by optimized growth, J. Struct. Eng.-Asce, 120, 10, 3063-3070 (1994)
[22] McKeown, J., Growing optimal pin-jointed frames, Struct. Optim., 15, 2, 92-100 (1998)
[23] Martinez, P.; Marti, P.; Querin, O. M., Growth method for size, topology, and geometry optimization of truss structures, Struct. Multidiscip. Optim., 33, 1, 13-26 (2006)
[24] Hagishita, T.; Ohsaki, M., Topology optimization of trusses by growing ground structure method, Struct. Multidiscip. Optim., 37, 4, 377-393 (2009)
[25] Zegard, T.; Paulino, G. H., Truss layout optimization within a continuum, Struct. Multidiscip. Optim., 48, 1-16 (2013) · Zbl 1274.74423
[26] P. Wei, H.T. Ma, T. Chen, Stiffness spreading method for layout optimization of truss structures, in: 6th China-Japan-Korea joint symposium on optimization of structural and mechanical systems, June 22-25, 2010, Kyoto, Japan.
[27] Wei, P.; Ma, H. T.; Wang, M. Y., The stiffness spreading method for layout optimization of truss structures, Struct. Multidiscip. Optim., 49, 4, 667-682 (2014)
[28] Li, Y. X.; Wei, P.; Ma, H. T., Integrated optimization of heat-transfer systems consisting of discrete thermal conductors and solid material, Int. J. Heat Mass Transfer, 113, 1059-1069 (2017)
[29] Cao, M. J.; Ma, H. T.; Wei, P., A modified stiffness spreading method for layout optimization of truss structures, Acta Mech. Sinica, 34, 6, 1072-1083 (2018)
[30] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[31] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons: John Wiley & Sons London · Zbl 1378.65009
[32] Adam, C.; Hughes, T. R.; Bouabdallah, S., Selective and reduced numerical integrations for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 732-761 (2015) · Zbl 1425.65138
[33] Piegl, L. A.; Tiller, W., The NURBS Book (1997), DBLP · Zbl 0868.68106
[34] Hennig, P.; Kastner, M.; Morgenstern, P., Adaptive mesh refinement strategies in isogeometric analysis— a computational comparison, Comput. Methods Appl. Mech. Engrg., 424-448 (2017) · Zbl 1439.65169
[35] Hao, P.; Yuan, X. J.; Liu, C., An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels, Comput. Methods Appl. Mech. Engrg., 205-238 (2018) · Zbl 1440.74399
[36] Kiendl, J.; Bletzinger, K. U.; Linhard, J., Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Engrg., 198, 49-52, 3902-3914 (2009) · Zbl 1231.74422
[37] Leonetti, L.; Liguori, F.; Magisano, D., An efficient isogeometric solid-shell formulation for geometrically nonlinear analysis of elastic shells, Comput. Methods Appl. Mech. Engrg., 331, 159-183 (2018) · Zbl 1439.74176
[38] Benson, D. J.; Bazilevs, Y.; Hsu, M. C., Isogeometric shell analysis: The Reissner-Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 276-289 (2010) · Zbl 1227.74107
[39] Hirschler, T.; Bouclier, R.; Duval, A., Isogeometric sizing and shape optimization of thin structures with a solid-shell approach, Struct. Multidiscip. Optim. (2018)
[40] Lüdeker, J. K.; Sigmund, O.; Kriegesmann, B., Inverse homogenization using isogeometric shape optimization, Comput. Methods Appl. Mech. Engrg., 368 (2020) · Zbl 1506.74328
[41] Feng, S. Q.; Zhang, W. H.; Meng, L., Stiffener layout optimization of shell structures with B-spline parameterization method, Struct. Multidiscip. Optim., 1-15 (2021)
[42] Liu, H. L.; Yang, D. X.; Hao, P., Isogeometric analysis based topology optimization design with global stress constraint, Comput. Methods Appl. Mech. Engrg., 342, DEC.1, 625-652 (2018) · Zbl 1440.74301
[43] Ghasemi, H.; Park, H. S.; Rabczuk, T., A level-set based IGA formulation for topology optimization of flexoelectric materials, Comput. Methods Appl. Mech. Engrg., 239-258 (2017) · Zbl 1439.74414
[44] Waltz, R. A.; Morales, J. L.; Nocedal, J., An interior algorithm for nonlinear optimization that combines line search and trust region steps, Math. Program., 107, 3, 391-408 (2006) · Zbl 1134.90053
[45] Zhang, J. X.; Wang, B.; Niu, F., Design optimization of connection section for concentrated force diffusion, Mech. Based Des. Struct. Mach., 43, 2, 209-231 (2015)
[46] Gao, T.; Li, B. Q.; Zhang, W. H., Topology optimization of continuum structures subjected to the variance constraint of reaction forces, Struct. Multidiscip. Optim., 56, 4, 755-765 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.