×

Discrete-continuous structural optimization with distributed evolution strategies. (English) Zbl 0974.74047

Summary: This paper describes the development and application of distributed evolution strategies (ES) in the field of mixed-discrete structural optimization. ES are direct, probabilistic optimization methods based on the use of the three evolution operators recombination, mutation and selection in an evolving population of competing individuals in the design space. Advanced features of the employed ES include self-adaptation of strategy parameters to achieve on-line tuning of the optimization process, and a flexible selection scheme that allows scalable lifetimes of individuals. The property of using a population of coexisting but independent individuals allow an efficient realization in distributed computing environments. This approach results in a drastic reduction of response time and in an improved applicability to large-scale problems.

MSC:

74P10 Optimization of other properties in solid mechanics
74K99 Thin bodies, structures
92D99 Genetics and population dynamics
Full Text: DOI

References:

[1] DOI: 10.1002/nme.1620381606 · Zbl 0855.73052 · doi:10.1002/nme.1620381606
[2] DOI: 10.1016/0045-7949(90)90035-Z · doi:10.1016/0045-7949(90)90035-Z
[3] Cai J., Diskrete Optimierung dynamisch belasteter Tragwerke mit sequentietten und parallelen Evolutionsstrategien. Dissertation (1995)
[4] Grill H., Ein ohjektorientiertes Programmsystem zur gemischt-diskreten Strukturoptimierung mil verteilten Evolutionsstrategien (1998)
[5] Grill, H and Hartmann, D. 1997. Learning from nature: Structural design using distributed evolution strategies. In; 3rd European CRA Y-SGI MPP Workshop. September1997. http://armoise. saclay.cea.fr/workshop/Program. html.
[6] Groenwold, A.A, Stander, N and Snyman, J.A. Discrete structural optimization through selective dynamic rounding. Proceedings of the First World Congress of Structural and Multidisciplinary Optimization. Edited by: Olhoff, N and Rozvany, G.I.N. Goslar, Germany · Zbl 0899.73321
[7] DOI: 10.2514/3.25195 · doi:10.2514/3.25195
[8] DOI: 10.2514/3.10367 · doi:10.2514/3.10367
[9] Hartmann D, DFG Forschergruppe Optimierung in der Strukturmechanik 28 (1996)
[10] DOI: 10.1061/(ASCE)0733-9445(1992)118:5(1233) · doi:10.1061/(ASCE)0733-9445(1992)118:5(1233)
[11] Ringertz U.T, Engineering Computations 13 pp 47– (1988)
[12] DOI: 10.1007/BF01743339 · doi:10.1007/BF01743339
[13] Schwefel H.P, Evolution and Optimum Seeking (1995) · Zbl 0800.92129
[14] Schwefel, H.P and Rudolph, G. Contemporary evolution strategies. Advances in Artificial Life. Edited by: Morán, F, Moreno, A, Merelo, J.J and Chacón, P. pp.893–907. http://isll-www.informatik.uni-dortmund. de/publications. html
[15] DOI: 10.1016/S0141-0296(96)00076-4 · doi:10.1016/S0141-0296(96)00076-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.