×

Hydrocarbon links in an octet truss. (English) Zbl 1147.92046

Summary: We use the octet truss of R. B. Fuller [U.S. Patent 2986241 (1961)] to develop a geometric placement method for synthesizing braid representations of knots and links of oligo (phenylene ethynylene)s using the \(60^\circ \) ortho, \(120^\circ \) meta or \(180^\circ \) para phenyl ring substitution angles and respecting the van der Waals repulsion constraints. We show that any knot or link can be realized by a phenylene ethynylene oligomer modeled on the octet truss. Use of this lattice is motivated by the structural constraints of these phenylene ethynylene units. Where in bio-organic chemistry, questions often involve identifying existing knots, for example in DNA strands, organic synthesis is concerned with assembling molecular structures that can be verified to exist in a desired knot topology. This physical realization of a knot as a construction of common organic molecular subunits then facilitates further study of the properties of knotted molecules in general.

MSC:

92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)
57M25 Knots and links in the \(3\)-sphere (MSC2010)
92C40 Biochemistry, molecular biology
Full Text: DOI

References:

[1] P.J. Flory, Statistical Mechanics of Chain Molecules. (Interscience Publishers, 1969)
[2] S.H. Gellman, Acc. Chem. Res. 31, 173 (1998); D.J. Hill, M.J. Mio, R.B. Prince, T.S. Hughes, J.S. Moore, Chem. Rev. 101, 3893 (2001); C.M. Goodman, S. Choi, S. Shandler, W.F. DeGrado, Nature Chem. Biol. 3, 252 (2007)
[3] C. Dietrich-Buchecker, J.-P. Sauvage, New J. Chem. 16, 277 (1992); C. Dietrich-Buchecker, B.X. Colasson, J.-P. Sauvage, Top. Curr. Chem. 249, 261 (2005); O. Lukin, F. Vögtle, Angew. Chem. Int. Ed. 44, 1456 (2005)
[4] B. Hudson, J. Vinograd, Nature. 216, 647 (1967); D.A. Clayton, J. Vinograd, Nature 216, 652 (1967); M.D. Frank-Kamenetskii, A.V. Lukashin, A.V. Vologodskii, Nature. 258, 398 (1975); L.F. Liu, R.E. Depew, J.C. Wang, J. Mol. Biol. 106, 439 (1976); L.F. Liu, C.-C. Liu, B.M. Alberts, Cell. 19, 1716 (1980); N.C. Seeman, Angew. Chem. Int. Ed. 37, 3220 (1998)
[5] C.O. Dietrich-Buchecker, J.P. Sauvage, J.M. Kern, J. Am. Chem. Soc. 106, 3043 (1984); C. Mao, W. Sun, N.C. Seeman, Nature. 386, 137 (1997); K.S. Chichak, S.J. Cantrill, A.R. Pease, S.-H. Chiu, G.W.V. Cave, J.L. Atwood, J.F. Stoddart, Science. 304, 1308 (2004)
[6] O. Dietrich-Buchecker, J. Guilhem, C. Pascard, J.P. Sauvage, Angew. Chem. Int. Ed. 29, 1154 (1990); P.R. Ashton, O.A. Matthews, S. Menzer, F.M. Raymo, N. Spencer, J.F. Stoddart, D.J. Williams, Liebigs Ann. 2485 (1997); O. Dietrich-Buchecker, G. Rapenne, J.P. Sauvage, J. Chem. Soc. Chem. Commun. 21, 2053 (1997); G. Rapenne, O. Dietrich-Buchecker, J.P. Sauvage, J. Am. Chem. Soc. 121, 994 (1999); O. Safarowsky, M. Nieger, R. Fröhlich, F. Vögtle, Angew. Chem. Int. Ed. 39, 1616 (2000)
[7] Z. Wu, S. Lee, J. S. Moore, J. Am. Chem. Soc. 114, 8730 (1992); J. Zhang, D.J. Pesak, J.L. Ludwick, J.S. Moore, J. Am. Chem. Soc. 116, 4227 (1994); J.C. Nelson, J.K. Young, J.S. Moore, J. Org. Chem. 61, 8160 (1996); S. Anderson, Chem. Eur. J. 7, 4706 (2001); Y. Hosokawa, T. Kawase, M. Oda, Chem. Commun. 1948 (2001)
[8] R.H. Grubbs, D. Kratz, Chem. Ber.-Recl. 126, (1993); A. Orita, E. Alonso, J. Yaruva, J. Otera, Syn. Lett. 1333 (2000); T. V. Jones, R.A. Blatchly, G.N. Tew, Org. Lett. 5, 3297 (2003)
[9] J.C. Nelson, J.G. Saven, J.S. Moore, P.G. Wolynes, Science. 277, 1793 (1997); R.B. Prince, J.G. Saven, P.G. Wolynes, J.S. Moore, J. Am. Chem. Soc. 121, 3114 (1999); R.A. Blatchly, G.N. Tew, J. Org. Chem. 68, 8780 (2003)
[10] S. Lahiri, J.L. Thompson, J.S. Moore, J. Am. Chem. Soc. 122, 11315 (2000); D.H. Zhao, J.S. Moore, J. Org. Chem. 67, 3548 (2002); J.A. Marsden, J.J. Miller, L.D. Shirtcliff, M.M. Haley, J. Am. Chem. Soc. 127, 2464 (2005); S. Anand, O. Varnavski, J.A. Marsden, M.M. Haley, H.B. Schlegel, T. Goodson III, J. Phys. Chem. A, 110, 1305 (2006); J.S. Moore, W. Zhang, Angew. Chem. Int. Ed. 45, 4416 (2006)
[11] C. Bielawski, Y.-S. Chen, P. Zhang, P.-J. Prest, J.S. Moore, Chem. Commun. 1313 (1998); R.B. Prince, T. Okada, J.S. Moore, Angew. Chem. Int. Ed. 38, 233 (1999); J.M. Heemstra, J.S. Moore, Org. Lett. 6, 659 (2004); A. Orita, T. Nakano, D.L. An, K. Tanikawa, K. Wakamatsu, J. Otera, J. Am. Chem. Soc. 126, 10389 (2004)
[12] Alexander J.W. (1923) Proc. Nat. Acad. Sci. USA 9, 93 · doi:10.1073/pnas.9.3.93
[13] Adams C.C. (1994) The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. W. N. Freeman and Company, New York · Zbl 0840.57001
[14] Bondi A. (1964) J. Phys. Chem. 68, 441 · doi:10.1021/j100785a001
[15] R.B. Fuller U.S. Patent 2986241 (1961)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.