×

Symmetry-reduced dynamic mode decomposition of near-wall turbulence. (English) Zbl 1521.76159

Summary: Data-driven dimensionality reduction methods such as proper orthogonal decomposition and dynamic mode decomposition have proven to be useful for exploring complex phenomena within fluid dynamics and beyond. A well-known challenge for these techniques is posed by the continuous symmetries, e.g. translations and rotations, of the system under consideration, as drifts in the data dominate the modal expansions without providing an insight into the dynamics of the problem. In the present study, we address this issue for fluid flows in rectangular channels by formulating a continuous symmetry reduction method that eliminates the translations in the streamwise and spanwise directions simultaneously. We demonstrate our method by computing the symmetry-reduced dynamic mode decomposition (SRDMD) of sliding windows of data obtained from the transitional plane-Couette and turbulent plane-Poiseuille flow simulations. In the former setting, SRDMD captures the dynamics in the vicinity of the invariant solutions with translation symmetries, i.e. travelling waves and relative periodic orbits, whereas in the latter, our calculations reveal episodes of turbulent time evolution that can be approximated by a low-dimensional linear expansion.

MSC:

76F10 Shear flows and turbulence
76F99 Turbulence
76M10 Finite element methods applied to problems in fluid mechanics

Software:

channelflow; piDMD

References:

[1] Baddoo, P.J., Herrmann, B., Mckeon, B.J., Kutz, J.N. & Brunton, S.L.2021 Physics-informed dynamic mode decomposition (piDMD). arXiv:2112.04307.
[2] Budanur, N.B., Borrero-Echeverry, D. & Cvitanović, P.2015aPeriodic orbit analysis of a system with continuous symmetry – a tutorial. Chaos25 (7), 073112. · Zbl 1374.37001
[3] Budanur, N.B. & Cvitanović, P.2016Unstable manifolds of relative periodic orbits in the symmetry-reduced state space of the Kuramoto-Sivashinsky system. J. Stat. Phys.167 (3-4), 636-655. · Zbl 1372.37057
[4] Budanur, N.B., Cvitanović, P., Davidchack, R.L. & Siminos, E.2015bReduction of SO(2) symmetry for spatially extended dynamical systems. Phys. Rev. Lett.114 (8), 084102.
[5] Budanur, N.B., Dogra, A.S. & Hof, B.2019Geometry of transient chaos in streamwise-localized pipe flow turbulence. Phys. Rev. Fluids4 (10), 102401(R).
[6] Budanur, N.B. & Hof, B.2017Heteroclinic path to spatially localized chaos in pipe flow. J. Fluid Mech.827, R1. · Zbl 1460.76374
[7] Budanur, N.B. & Hof, B.2018Complexity of the laminar-turbulent boundary in pipe flow. Phys. Rev. Fluids3 (5), 054401.
[8] Budanur, N.B., Short, K.Y., Farazmand, M., Willis, A.P. & Cvitanović, P.2017Relative periodic orbits form the backbone of turbulent pipe flow. J. Fluid Mech.833, 274-301. · Zbl 1419.76261
[9] Chandler, G.J. & Kerswell, R.R.2013Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow. J. Fluid Mech.722, 554-595. · Zbl 1287.76124
[10] Chossat, P. & Lauterbach, R.2000Methods in Equivariant Bifurcations and Dynamical Systems. World Scientific. · Zbl 0968.37001
[11] Crowley, C.J., Pughe-Sanford, J.L., Toler, W., Krygier, M.C., Grigoriev, R.O. & Schatz, M.F.2022Turbulence tracks recurrent solutions. Proc. Natl Acad. Sci. USA119 (34), e2120665119.
[12] Eckhardt, B., Faisst, H., Schmiegel, A. & Schneider, T.M.2007Dynamical systems and the transition to turbulence in linearly stable shear flows. Phil. Trans. R. Soc. Lond. A366 (1868), 1297-1315.
[13] Farano, M., Cherubini, S., Robinet, J.-C., Palma, P.D. & Schneider, T.M.2018Computing heteroclinic orbits using adjoint-based methods. J. Fluid Mech.858, R3.
[14] Farazmand, M.2016An adjoint-based approach for finding invariant solutions of Navier-Stokes equations. J. Fluid Mech.795, 278-312. · Zbl 1359.76077
[15] Gibson, J.F., Halcrow, J. & Cvitanović, P.2008Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech.611, 107-130. · Zbl 1151.76453
[16] Gibson, J.F., Halcrow, J. & Cvitanović, P.2009Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech.638, 243-266. · Zbl 1183.76688
[17] Gibson, J.F., et al.2020 Channelflow 2.0 (in preparation), https://www.channelflow.ch.
[18] Golubitsky, M. & Schaeffer, D.G.1985Singularities and Groups in Bifurcation Theory. Springer. · Zbl 0607.35004
[19] Graham, M.D. & Floryan, D.2021Exact coherent states and the nonlinear dynamics of wall-bounded turbulent flows. Annu. Rev. Fluid Mech.53 (1), 227-253. · Zbl 1459.76061
[20] Hamilton, J.M., Kim, J. & Waleffe, F.1995Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech.287, 317-348. · Zbl 0867.76032
[21] Hiruta, Y. & Toh, S.2017Intermittent direction reversals of moving spatially localized turbulence observed in two-dimensional Kolmogorov flow. Phys. Rev. E96 (6), 063112.
[22] Holmes, P., Lumley, J.L. & Berkooz, G.1996Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press. · Zbl 0890.76001
[23] Jiménez, J.2018aCoherent structures in wall-bounded turbulence. J. Fluid Mech.842, P1. · Zbl 1419.76316
[24] Jiménez, J.2018bMachine-aided turbulence theory. J. Fluid Mech.854, R1. · Zbl 1415.76249
[25] Jiménez, J. & Moin, P.1991The minimal flow unit in near-wall turbulence. J. Fluid Mech.225, 213-240. · Zbl 0721.76040
[26] Jiménez, J. & Pinelli, A.1999The autonomous cycle of near-wall turbulence. J. Fluid Mech.389, 335-359. · Zbl 0948.76025
[27] Kawahara, G., Uhlmann, M. & Van Veen, L.2012The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech.44 (1), 203-225. · Zbl 1352.76031
[28] Kerswell, R.R.2005Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity18 (6), R17-R44. · Zbl 1084.76033
[29] Kneer, S., Sayadi, T., Sipp, D., Schmid, P. & Rigas, G.2022 Symmetry-aware autoencoders: s-PCA and s-nlPCA. arXiv:2111.02893.
[30] Koopman, B.O.1931Hamiltonian systems and transformation in Hilbert space. Proc. Natl Acad. Sci. USA17 (5), 315-318. · Zbl 0002.05701
[31] Krygier, M.C., Pughe-Sanford, J.L. & Grigoriev, R.O.2021Exact coherent structures and shadowing in turbulent Taylor-Couette flow. J. Fluid Mech.923, A7. · Zbl 07398608
[32] Kutz, J.N., Brunton, S.L., Brunton, B.W. & Proctor, J.L.2016Dynamic Mode Decomposition. Society for Industrial and Applied Mathematics. · Zbl 1365.65009
[33] Linot, A.J. & Graham, M.D.2020Deep learning to discover and predict dynamics on an inertial manifold. Phys. Rev. E101 (6), 062209.
[34] Lu, H. & Tartakovsky, D.M.2020Lagrangian dynamic mode decomposition for construction of reduced-order models of advection-dominated phenomena. J. Comput. Phys.407, 109229. · Zbl 07504703
[35] Mendible, A., Brunton, S.L., Aravkin, A.Y., Lowrie, W. & Kutz, J.N.2020Dimensionality reduction and reduced-order modeling for traveling wave physics. Theor. Comput. Fluid Dyn.34 (4), 385-400.
[36] Mezić, I.2005Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn.41 (1-3), 309-325. · Zbl 1098.37023
[37] Page, J. & Kerswell, R.R.2019Koopman mode expansions between simple invariant solutions. J. Fluid Mech.879, 1-27. · Zbl 1430.76222
[38] Page, J. & Kerswell, R.R.2020Searching turbulence for periodic orbits with dynamic mode decomposition. J. Fluid Mech.886, A28. · Zbl 1460.76417
[39] Pope, S.B.2000Turbulent Flows. Cambridge University Press. · Zbl 0966.76002
[40] Rowley, C.W. & Dawson, S.T.2017Model reduction for flow analysis and control. Annu. Rev. Fluid Mech.49 (1), 387-417. · Zbl 1359.76111
[41] Rowley, C.W. & Marsden, J.E.2000Reconstruction equations and the Karhunen-Loéve expansion for systems with symmetry. Physica D142, 1-19. · Zbl 0954.35144
[42] Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D.S.2009Spectral analysis of nonlinear flows. J. Fluid Mech.641, 115-127. · Zbl 1183.76833
[43] Schmid, P. & Sesterhenn, J.2008 Dynamic mode decomposition of numerical and experimental data. In 61st Annual Meeting of the APS Division of Fluid Dynamics, Bull. Am. Phys. Soc., vol. 53 (15), pp. MR-007, http://meetings.aps.org/link/BAPS.2008.DFD.MR.7.
[44] Schmid, P.J.2010Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech.656, 5-28. · Zbl 1197.76091
[45] Schoppa, W. & Hussain, F.2002Coherent structure generation in near-wall turbulence. J. Fluid Mech.453, 57-108. · Zbl 1141.76408
[46] Sesterhenn, J. & Shahirpour, A.2019A characteristic dynamic mode decomposition. Theor. Comput. Fluid Dyn.33 (3-4), 281-305.
[47] Sirovich, L.1987aTurbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Maths45 (3), 561-571. · Zbl 0676.76047
[48] Sirovich, L.1987bTurbulence and the dynamics of coherent structures. II. Symmetries and transformations. Q. Appl. Maths45 (3), 573-582. · Zbl 0676.76047
[49] Sirovich, L.1989Chaotic dynamics of coherent structures. Physica D37 (1), 126-145.
[50] Suri, B., Pallantla, R.K., Schatz, M.F. & Grigoriev, R.O.2019Heteroclinic and homoclinic connections in a Kolmogorov-like flow. Phys. Rev. E100 (1), 013112.
[51] Suri, B., Tithof, J., Grigoriev, R.O. & Schatz, M.F.2017Forecasting fluid flows using the geometry of turbulence. Phys. Rev. Lett.118 (11), 114501.
[52] Suri, B., Tithof, J., Grigoriev, R.O. & Schatz, M.F.2018Unstable equilibria and invariant manifolds in quasi-two-dimensional Kolmogorov-like flow. Phys. Rev. E98 (2), 023105. · Zbl 1460.76179
[53] Trefethen, L.N. & Bau, D.1997Numerical Linear Algebra. SIAM. · Zbl 0874.65013
[54] Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L. & Kutz, J.N.2014On dynamic mode decomposition: theory and applications. J. Comput. Dyn.1 (2), 391-421. · Zbl 1346.37064
[55] Van Veen, L. & Kawahara, G.2011Homoclinic tangle on the edge of shear turbulence. Phys. Rev. Lett.107 (11), 114501.
[56] Viswanath, D.2007Recurrent motions within plane Couette turbulence. J. Fluid Mech.580, 339-358. · Zbl 1175.76074
[57] Waleffe, F.1997On a self-sustaining process in shear flows. Phys. Fluids9 (4), 883-900.
[58] Waleffe, F.2001Exact coherent structures in channel flow. J. Fluid Mech.435, 93-102. · Zbl 0987.76034
[59] Waleffe, F.2003Homotopy of exact coherent structures in plane shear flows. Phys. Fluids15 (6), 1517-1534. · Zbl 1186.76556
[60] Willis, A.P., Short, K.Y. & Cvitanović, P.2016Symmetry reduction in high dimensions, illustrated in a turbulent pipe. Phys. Rev. E93 (2), 022204.
[61] Yalnız, G., Hof, B. & Budanur, N.B.2021Coarse graining the state space of a turbulent flow using periodic orbits. Phys. Rev. Lett.126 (24), 244502.
[62] Yalnız, G., Marensi, E. & Budanur, N.B.2022 SRDMD code and data. Our DMD tools and the data presented in this paper are available at https://doi.org/10.5281/zenodo.7418845.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.