×

A complex-analytic approach to kinetic energy properties of irrotational traveling water waves. (English) Zbl 1494.76012

Summary: Relying on conformal mappings we prove the logarithmic convexity of certain flow quantities associated with irrotational periodic travelling waves that propagate at the surface of water over a flat bed. These results enable us to quantify the observation that the kinetic energy and the time-period of the particle paths are larger near the surface and reduce with increasing depth.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76M40 Complex variables methods applied to problems in fluid mechanics

References:

[1] Amick, CJ; Toland, JF, On periodic water-waves and their convergence to solitary waves in the long-wave limit, Philos. Trans. R. Soc. A, 303, 633-669 (1981) · Zbl 0482.76029
[2] Bühler, O., Waves and Mean Flows (2014), Cambridge: Cambridge University Press, Cambridge · Zbl 1286.86002 · doi:10.1017/CBO9781107478701
[3] Clamond, D., Note on the velocity and related fields of steady irrotational two-dimensional surface gravity waves, Philos. Trans. R. Soc. Lond. A, 370, 1572-1586 (2012) · Zbl 1250.76033
[4] Constantin, A.; Strauss, W., Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 53, 533-557 (2010) · Zbl 1423.76061
[5] Constantin, O., Persson, A.-M.: A complex-analytic approach to kinetic energy properties of irrotational flows. Proc. Am. Math. Soc. 150, 2647-2653 (2022) · Zbl 1485.76017
[6] Craig, W.; Sulem, C., Numerical simulation of gravity waves, J. Comput. Phys., 108, 73-83 (1993) · Zbl 0778.76072 · doi:10.1006/jcph.1993.1164
[7] EPRI: Mapping and assessment of the United States ocean wave energy resource (2011)
[8] Leijon, J.; Boström, C., Freshwater production from the motion of ocean waves—a review, Desalination, 435, 161-171 (2018) · doi:10.1016/j.desal.2017.10.049
[9] Longuet-Higgins, MS, On the decrease of velocity with depth in an irrotational water wave, Math. Proc. Camb. Philos. Soc., 49, 552-560 (1953) · Zbl 0051.18403 · doi:10.1017/S030500410002870X
[10] Nachbin, A.; Ribeiro-Junior, R., A boundary integral formulation for particle trajectories in Stokes waves, Discrete Contin. Dyn. Syst., 34, 3135-3153 (2014) · Zbl 1302.76034 · doi:10.3934/dcds.2014.34.3135
[11] Nachbin, A.; Ribeiro-Junior, R., Capturing the flow beneath water waves, Philos. Trans. R. Soc. A, 376, 17 (2018) · Zbl 1404.76049 · doi:10.1098/rsta.2017.0098
[12] Rudin, W., Real and Complex Analysis (1987), New York: McGraw-Hill Book Co., New York · Zbl 0925.00005
[13] Sarason, D., The \(H^p\) spaces of an annulus, Mem. Am. Math. Soc., 56, 78 (1965) · Zbl 0127.07002
[14] Strauss, W., Steady water waves, Bull. Am. Math. Soc., 47, 671-694 (2010) · Zbl 1426.76078 · doi:10.1090/S0273-0979-2010-01302-1
[15] Toland, JF, Stokes waves, Topol. Methods Nonlinear Anal., 7, 1-48 (1996) · Zbl 0897.35067 · doi:10.12775/TMNA.1996.001
[16] Umeyama, M., Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry, Philos. Trans. R. Soc. Lond. A, 370, 1687-1702 (2012) · Zbl 1250.76042
[17] Xie, J.; Zuo, L., Dynamics and control of ocean wave energy converters, Int. J. Dyn. Control, 1, 262-276 (2013) · doi:10.1007/s40435-013-0025-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.