×

An implicit system of delay differential algebraic equations from hydrodynamics. (English) Zbl 1538.34298

Summary: Direct spring operated pressure relief valves connected to a constantly charged vessel and a downstream pipe have a complex dynamics. The vessel-valve subsystem is described with an autonomous system of ordinary differential equations, while the presence of the pipe adds two partial differential equations to the mathematical model. The partial differential equations are transformed to a delay algebraic equation coupled to the ordinary differential equations. Due to a square root nonlinearity, the system is implicit. The linearized system can be transformed to a standard system of neutral delay differential equations (NDDEs) having more elaborated literature than the delay algebraic equations. First, the different forms of the mathematical model are presented, then the transformation of the linearized system is conducted. The paper aims at introducing this unusual mathematical model of an engineering system and inducing research focusing on the methodology to carry out bifurcation analysis in implicit NDDEs.

MSC:

34K32 Implicit functional-differential equations
34K40 Neutral functional-differential equations
34K18 Bifurcation theory of functional-differential equations
34K13 Periodic solutions to functional-differential equations