×

Bifurcations of travelling wave solutions in a model of the hydrogen-bonded systems. (English) Zbl 1106.35086

The authors deal with the hydrogen-bonded system, that is \[ u_{tt}-u_{xx}-\beta u_xu_{xx}+\omega^2\frac{dV}{dt}=0,\tag{1} \] where \(V(u)=\frac{2(\cos(\frac u2)-\cos(\frac{u_0}{2}))^2}{1-\cos^2 (\frac{u_0}{2})}\), \(u_0\neq 0\) is a constant, and \(0\leq\cos\frac{u_0} {2}<1\), \(\beta,\omega\in\mathbb{R}\). The purpose of this work is to investigate all bifurcations of solitary wave, kink waves and periodic waves for (1). To this end the authors study all periodic annuli, homoclinic and heteroclinic orbits of \[ (c^2-1)\varphi_{\xi\xi}-\beta\varphi_\xi \varphi_{\xi\xi}-\frac{2\omega^2}{1-\cos^2(\frac{u_0}{2})}\sin\frac {\varphi}{2}\left(\cos\frac{\varphi}{2}-\cos\frac{u_0}{2}\right)=0\tag{2} \] depending on the parameter space of this system. Here \(u(x,t)= \varphi(x-ct)=\varphi(\xi)\).

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
37K50 Bifurcation problems for infinite-dimensional Hamiltonian and Lagrangian systems
34C23 Bifurcation theory for ordinary differential equations
35Q51 Soliton equations
Full Text: DOI

References:

[1] Chow, S. N.; Hale, J. K., Method of Bifurcation Theory (1981), Springer-Verlag: Springer-Verlag New York
[2] Debnath, L., Nonlinear Partial Differential Equations for Scientists and Engineers (1997), Birkhauser: Birkhauser Boston · Zbl 0892.35001
[3] Guckenheimer, J.; Holmes, P. J., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0515.34001
[4] Li, J.; Shen, J., Travelling wave solutions in a model of the Helix Polypeptide chains, Chaos, Solitons and Fractals, 20, 827-841 (2004) · Zbl 1049.35137
[5] Li, J.; Liu, Z., Smooth and non-smooth traveling waves in a nonlinearly dispersive equation, Appl. Math. Modell., 25, 41-56 (2000) · Zbl 0985.37072
[6] Li, J.; Liu, Z., Travelling wave solutions for a class of nonlinear dispersive equations, Chin. Ann. Math. Ser. B, 23, 3, 397-418 (2002) · Zbl 1011.35014
[7] Li, Y. A.; Olver, P. J., Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system I: Compactons and peakons, Discr. Contin. Dyn. Syst., 3, 419-432 (1997) · Zbl 0949.35118
[8] Li, Y. A.; Olver, P. J., Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system II: Complex analytic behaviour and convergence to non-analytic solutions, Discr. Contin. Dyn. Syst., 4, 159-191 (1998) · Zbl 0959.35157
[9] Perko, L., Differential Equations and Dynamical Systems (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0717.34001
[10] Mei, Y. P.; Yan, J. R.; Yan, X. H.; You, J. Q., Proton soliton in anharmonic interaction approximation, Phys. Lett. A, 170, 289-292 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.