×

Travelling waves due to negative plant-soil feedbacks in a model including tree life-stages. (English) Zbl 1540.35092

Summary: The emergence and maintenance of tree species diversity in tropical forests is commonly attributed to the Janzen-Connell (JC) hypothesis, which states that growth of seedlings is suppressed in the proximity of conspecific adult trees. As a result, a JC distribution due to a density-dependent negative feedback emerges in the form of a (transient) pattern where conspecific seedling density is highest at intermediate distances away from parent trees. Several studies suggest that the required density-dependent feedbacks behind this pattern could result from interactions between trees and soil-borne pathogens. However, negative plant-soil feedback may involve additional mechanisms, including the accumulation of autotoxic compounds generated through tree litter decomposition. An essential task therefore consists in constructing mathematical models incorporating both effects showing the ability to support the emergence of JC distributions.
In this work, we develop and analyse a novel reaction-diffusion-ODE model, describing the interactions within tropical tree species across different life stages (seeds, seedlings, and adults) as driven by negative plant-soil feedback. In particular, we show that under strong negative plant-soil feedback travelling wave solutions exist, creating transient distributions of adult trees and seedlings that are in agreement with the Janzen-Connell hypothesis. Moreover, we show that these travelling wave solutions are pulled fronts and a robust feature as they occur over a broad parameter range. Finally, we calculate their linear spreading speed and show its (in)dependence on relevant nondimensional parameters.

MSC:

35C07 Traveling wave solutions
34C60 Qualitative investigation and simulation of ordinary differential equation models
34D05 Asymptotic properties of solutions to ordinary differential equations
35K57 Reaction-diffusion equations
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
92D40 Ecology
Full Text: DOI

References:

[1] Connell, J. H., On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dyn. Popul., 312 (1971)
[2] Janzen, D. H., Herbivores and the number of tree species in tropical forests. Amer. Nat., 940, 501-528 (1970)
[3] Macarthur, R.; Levins, R., The limiting similarity, convergence, and divergence of coexisting species. Amer. Nat., 921, 377-385 (1967)
[4] May, R. M., Qualitative stability in model ecosystems. Ecology, 3, 638-641 (1973)
[5] Bever, J. D.; Mangan, S. A.; Alexander, H. M., Maintenance of plant species diversity by pathogens. Annu. Rev. Ecol. Evol. Syst., 305-325 (2015)
[6] Levi, T.; Barfield, M.; Barrantes, S.; Sullivan, C.; Holt, R. D.; Terborgh, J., Tropical forests can maintain hyperdiversity because of enemies. Proc. Natl. Acad. Sci., 2, 581-586 (2018)
[7] Packer, A.; Clay, K., Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature, 6775, 278-281 (2000)
[8] Mangan, S. A.; Schnitzer, S. A.; Herre, E. A.; Mack, K. M.L.; Valencia, M. C.; Sanchez, E. I.; Bever, J. D., Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 7307, 752-755 (2010)
[9] Mari, L.; Casagrandi, R.; Gatto, M.; Avgar, T.; Nathan, R., Movement strategies of seed predators as determinants of plant recruitment patterns. Amer. Nat., 5, 694-711 (2008)
[10] Mari, L.; Gatto, M.; Casagrandi, R., Central-place seed foraging and vegetation patterns. Theor. Popul. Biol., 4, 229-240 (2009) · Zbl 1403.92334
[11] Nathan, R.; Casagrandi, R., A simple mechanistic model of seed dispersal, predation and plant establishment: Janzen-Connell and beyond. J. Ecol., 5, 733-746 (2004)
[12] Thompson, S.; Alvarez-Loayza, P.; Terborgh, J.; Katul, G., The effects of plant pathogens on tree recruitment in the Western Amazon under a projected future climate: a dynamical systems analysis. J. Ecol., 6, 1434-1446 (2010)
[13] Bonanomi, G.; Zotti, M.; Idbella, M.; Termolino, P.; Micco, V. De; Mazzoleni, S., Field evidence for litter and self-DNA inhibitory effects on Alnus glutinosa roots. New Phytol., 2, 399-412 (2022)
[14] Mazzoleni, S.; Bonanomi, G.; Incerti, G.; Chiusano, M. L.; Lanzotti, V., Inhibitory and toxic effects of extracellular self-DNA in litter: a mechanism for negative plant-soil feedbacks?. New Phytol., 3, 1195-1210 (2014)
[15] Bonanomi, G.; Giannino, F.; Mazzoleni, S., Negative plant-soil feedback and species coexistence. Oikos, 2, 311-321 (2005)
[16] Mazzoleni, S.; Bonanomi, G.; Giannino, F.; Incerti, G.; Dekker, S. C.; Rietkerk, M., Modelling the effects of litter decomposition on tree diversity patterns. Ecol. Model., 23, 2784-2792 (2010)
[17] Mazzoleni, S.; Bonanomi, G.; Giannino, F.; Rietkerk, M.; Dekker, S.; Zucconi, F., Is plant biodiversity driven by decomposition processes? An emerging new theory on plant diversity. Community Ecol., 1, 103-109 (2007)
[18] Bonanomi, G.; Incerti, G.; Stinca, A.; Cartenì, F.; Giannino, F.; Mazzoleni, S., Ring formation in clonal plants. Community Ecol., 1, 77-86 (2014)
[19] Cartenì, F.; Marasco, A.; Bonanomi, G.; Mazzoleni, S.; Rietkerk, M.; Giannino, F., Negative plant soil feedback explaining ring formation in clonal plants. J. Theoret. Biol., 153-161 (2012) · Zbl 1337.92132
[20] Karst, N.; Dralle, D.; Thompson, S., Spiral and rotor patterns produced by fairy ring fungi. PLoS One, 3 (2016)
[21] Salvatori, N.; Moreno, M.; Zotti, M.; Iuorio, A.; Cartenì, F.; Bonanomi, G.; Mazzoleni, S.; Giannino, F., Process based modelling of plants-fungus interactions explains fairy ring types and dynamics. SSRN Electron. J. (2022)
[22] Marasco, A.; Giannino, F.; Iuorio, A., Modelling competitive interactions and plant-soil feedback in vegetation dynamics. Ric. Mat., 2, 553-577 (2020) · Zbl 1464.35372
[23] Marasco, A.; Iuorio, A.; Cartenì, F.; Bonanomi, G.; Tartakovsky, D. M.; Mazzoleni, S.; Giannino, F., Vegetation pattern formation due to interactions between water availability and toxicity in plant-soil feedback. Bull. Math. Biol., 11, 2866-2883 (2014) · Zbl 1329.92027
[24] Härting, S.; Marciniak-Czochra, A.; Takagi, I., Stable patterns with jump discontinuity in systems with Turing instability and hysteresis. Discrete Contin. Dyn. Syst., 2, 757-800 (2016) · Zbl 1357.35043
[25] Iuorio, A.; Veerman, F., The influence of autotoxicity on the dynamics of vegetation spots. Physica D (2021) · Zbl 1484.35040
[26] Köthe, A.; Marciniak-Czochra, A.; Takagi, I., Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete Contin. Dyn. Syst., 6, 3595-3627 (2020) · Zbl 1439.35271
[27] Marciniak-Czochra, A.; Karch, G.; Suzuki, K., Instability of Turing patterns in reaction-diffusion-ODE systems. J. Math. Biol., 583-618 (2017) · Zbl 1356.35043
[28] Veerman, F.; Mercker, M.; Marciniak-Czochra, A., Beyond Turing: far-from-equilibrium patterns and mechano-chemical feedback. Phil. Trans. R. Soc. A, 2213 (2021)
[29] Brown, S.; Dockery, J.; Pernarowski, M., Traveling wave solutions of a reaction diffusion model for competing pioneer and climax species. Math. Biosci., 1, 21-36 (2005) · Zbl 1063.92050
[30] Gerlee, P.; Nelander, S., Travelling wave analysis of a mathematical model of glioblastoma growth. Math. Biosci., 75-81 (2016) · Zbl 1343.92221
[31] Harley, K.; van Heijster, P.; Marangell, R.; Pettet, G. J.; Wechselberger, M., Numerical computation of an Evans function for travelling waves. Math. Biosci., 36-51 (2015) · Zbl 1356.92013
[32] Vincenot, C. E.; Cartenì, F.; Bonanomi, G.; Mazzoleni, S.; Giannino, F., Plant-soil negative feedback explains vegetation dynamics and patterns at multiple scales. Oikos, 9, 1319-1328 (2017)
[33] Iuorio, A.; Eppinga, M. B.; Baudena, M.; Veerman, F.; Rietkerk, M.; Giannino, F., Modelling how negative plant-soil feedbacks across life stages affect the spatial patterning of trees. Nature Scientific Reports (2023)
[34] Feeley, K. J.; Joseph Wright, S.; Nur Supardi, M. N.; Kassim, A. R.; Davies, S. J., Decelerating growth in tropical forest trees. Ecol. Lett., 6, 461-469 (2007)
[35] van Saarloos, W., Front propagation into unstable states. Phys. Rep., 2-6, 29-222 (2003) · Zbl 1042.74029
[36] Kuehn, C., General Fenichel Theory, 19-51
[37] Kuehn, C., PDE Dynamics: An Introduction, Vol. 23 (2019), SIAM · Zbl 1451.35001
[38] Rietkerk, M.; Boerlijst, M. C.; van Langevelde, F.; HilleRisLambers, R.; van de Koppel, J.; Kumar, L.; Prins, H. H.T.; de Roos, A. M., Self-organization of vegetation in arid ecosystems. Amer. Nat., 4, 524 (2002)
[39] Comita, Liza S.; Muller-Landau, Helene C.; Aguilar, Salomón; Hubbell, Stephen P., Asymmetric density dependence shapes species abundances in a tropical tree community. Science, 5989, 330-332 (2010)
[40] Mangan, S. A.; Schnitzer, S. A.; Herre, E. A.; Mack, K. M.L.; Valencia, M. C.; Sanchez, E. I.; Bever, J. D., Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 7307, 752-755 (2010)
[41] LaManna, Joseph A.; Mangan, Scott A.; Alonso, Alfonso; Bourg, Norman A.; Brockelman, Warren Y.; Bunyavejchewin, Sarayudh; Chang, Li-Wan; Chiang, Jyh-Min; Chuyong, George B.; Clay, Keith, Plant diversity increases with the strength of negative density dependence at the global scale. Science, 6345, 1389-1392 (2017)
[42] Inderjit; Callaway, Ragan M.; Meron, Ehud, Belowground feedbacks as drivers of spatial self-organization and community assembly. Phys. Life Rev., 1-24 (2021)
[43] Eppinga, M. B.; Van der Putten, W. H.; Bever, J. D., Plant-soil feedback as a driver of spatial structure in ecosystems: A commentary on “Belowground feedbacks as drivers of spatial self-organization and community assembly” by Inderjit, agan M. Callaway and Ehud Meron. Phys. Life Rev., 6-14 (2022)
[44] Levine, Jonathan M.; Pachepsky, Elizaveta; Kendall, Bruce E.; Yelenik, Stephanie G.; Lambers, Janneke Hille Ris, Plant-soil feedbacks and invasive spread. Ecol. Lett., 9, 1005-1014 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.