×

Modelling the spatio-temporal dynamics of multi-species host-parasitoid interactions: heterogeneous patterns and ecological implications. (English) Zbl 1447.92358

Summary: A mathematical model of the spatio-temporal dynamics of a two host, two parasitoid system is presented. There is a coupling of the four species through parasitism of both hosts by one of the parasitoids. The model comprises a system of four reaction-diffusion equations. The underlying system of ordinary differential equations, modelling the host-parasitoid population dynamics, has a unique positive steady state and is shown to be capable of undergoing Hopf bifurcations, leading to limit cycle kinetics which give rise to oscillatory temporal dynamics. The stability of the positive steady state has a fundamental impact on the spatio-temporal dynamics: stable travelling waves of parasitoid invasion exhibit increasingly irregular periodic travelling wave behaviour when key parameter values are increased beyond their Hopf bifurcation point. These irregular periodic travelling waves give rise to heterogeneous spatio-temporal patterns of host and parasitoid abundance. The generation of heterogeneous patterns has ecological implications and the concepts of temporary host refuge and niche formation are considered.

MSC:

92D25 Population dynamics (general)
92D40 Ecology
35C07 Traveling wave solutions
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI

References:

[1] Barker, A. M.; Coleman, R. A.; Fenner, M., Parasitism of the herbivore Pieris brassicae by Cotesia glomerata does not benefit the host plant by reduction of herbivory, J. Appl. Entomol., 123, 171-177 (1999)
[2] Barlow, N. D.; Beggs, J. R.; Moller, H., Spread of the wasp parasitoid Sphecophaga vesparum vesparum following its release in New Zealand, N. Z. J. Ecol., 22, 2, 205-208 (1998)
[3] Cameron, P. J.; Walker, G. P., Field evaluation of Cotesia rubecula, an introduced parasitoid of Pieris rapae in New Zealand, Biol. Control, 31, 2, 367-374 (2002)
[4] Corbett, A.; Rosenheim, J. A., Quantifying movement of a minute parasitoid Anagrus epos (Hymenoptera: Mymaridae), Biol. Control, 6, 35-44 (1996)
[5] De Bach, P.; Smith, H. S., Are population oscillations inherent in the host-parasite relation, Ecology, 22, 4, 363-369 (1941)
[6] Dicke, M.; van Poecke, R. M.P.; Roosjen, M.; Pumarino, L., Attraction to the specialist parasitoid Cotesia rubecula to Arabidopsis thaliana infested by host or non host herbivore species, Entomol. Exp. Appl., 107, 229-236 (2003)
[7] Dunbar, S. R., Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17, 11-32 (1983) · Zbl 0509.92024
[8] Dunbar, S. R., Travelling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinic orbits, SIAM J. Appl. Math., 46, 6, 1057-1078 (1986) · Zbl 0617.92020
[9] Durrett, R.; Levin, S., The importance of being discrete (and spatial), Theor. Popul. Biol., 46, 363-394 (1994) · Zbl 0846.92027
[10] Geervliet, J. B.F.; Ariens, S.; Dicke, M.; Vet, L. E.M., Long-distance assessment of patch profitability through volatile infochemicals by the parasitoids Cotesia glomerata and Cotesia rubecula, Biol. Control, 11, 113-121 (1998)
[11] Godfray, H. C.J., Parasitoids (1994), Princeton University Press: Princeton University Press USA
[12] Goldson, S. L.; Proffitt, J. R.; McNeill, M. R.; Baird, D. B., Linear patterns of dispersal and build up of the introduced parasitoid Microctonus hyperode (Hymenoptera: Braconidae) in Canterbury New Zealand, Bull. Entomol. Res., 89, 4, 347-353 (1999)
[13] Gurney, W. S.C.; Veitch, A. R.; Cruickshank, I.; McGeachin, G., Circles and spirals: population persistence in a spatially explicit predator-prey model, Ecology, 79, 7, 2516-2530 (1998)
[14] Hamilton, W. D.; May, R. M., Dispersal in stable habitats, Nature, 269, 578-581 (1977)
[15] Hanski, I., Metapopulation dynamics, Nature, 396, 41-49 (1998)
[16] Harvey, J. A.; Gols, R.; Jervis, M. A.; Jiang, N.; Vet, L. E.M., Development of the parasitoid Cotesia rubecula in Pieris rapae and Pieris brassicae: evidence for host regulation, J. Insect Physiol., 45, 173-182 (1999)
[17] Hassell, M. P., The Spatial and Temporal Dynamics of Host-Parasitoid Interactions (2000), Oxford University Press: Oxford University Press UK
[18] Hassell, M. P.; Wilson, H. B., The dynamics of spatially distributed host-parasitoid systems, (Tilman, D.; Kareiva, P., Spatial Ecology (1997), Princeton University Press: Princeton University Press USA)
[19] Hawkins, B. A.; Thomas, M. B.; Hochberg, M. E., Refuge theory and biological control, Science, 262, 1429-1432 (1993)
[20] Hochberg, M. E.; Holt, R. D., Refuge evolution and the population dynamics of coupled host-parasitoid interactions, Evol. Ecol., 9, 633-661 (1995)
[21] Hochberg, M. E.; Hassell, M. P.; May, R. M., The dynamics of host-parasitoid-pathogen interactions, Am. Nat., 135, 1, 74-94 (1990)
[22] Holmes, E. E.; Lewis, M. A.; Banks, J. A.; Veit, R. R., Partial differential equations in ecology: spatial interactions and population dynamics, Ecology, 75, 1, 17-29 (1994)
[23] Holt, R. D.; Hassell, M. P., Environmental heterogeneity and the stability of host-parasitoid interactions, J. Anim. Ecol., 62, 89-100 (1993)
[24] Holt, R. D.; Lawton, J. H., The ecological consequences of shared natural enemies, Ann. Rev. Ecol. Syst., 25, 495-520 (1994)
[25] Howard, L. N.; Kopell, N., Slowly varying waves and shock structures in reaction-diffusion equations, Stud. Appl. Math., 56, 95-145 (1977) · Zbl 0349.35070
[26] Ito, H.; Glass, L., Spiral breakup in a new model of discrete excitable media, Phys. Rev. Lett., 66, 5, 671-674 (1991)
[27] Ives, A. R., Continuous-time models of host-parasitoid interactions, Am. Nat., 140, 1, 1-29 (1992)
[28] Kopell, N.; Howard, L. N., Plane wave solutions to reaction-diffusion equations, Stud. Appl. Math., 42, 291-328 (1973) · Zbl 0305.35081
[29] Kot, M.; Lewis, M. A.; van den Driessche, P., Dispersal data and the spread of invading organisms, Ecology, 77, 2027-2042 (1996)
[30] Krebs, J. R.; Stephens, D. W., Foraging Theory (1986), Princeton University Press: Princeton University Press USA
[31] Leibold, M. A., The niche concept revisited: mechanistic models and community concept, Ecology, 76, 5, 1371-1382 (1995)
[32] Levin, S. A., Dispersion and population interactions, Am. Nat., 108, 960, 207-228 (1974)
[33] Mollison, D., Dependence of epidemic and population velocities on basic parameters, Math. Biosci., 107, 255-287 (1991) · Zbl 0743.92029
[34] Neubert, M. G.; Kot, M.; Lewis, M. A., Dispersal and pattern formation in a discrete-time predator-prey model, Theor. Popul. Biol., 48, 7-43 (1995) · Zbl 0863.92016
[35] Nowak, M. A.; Bonhoeffer, S.; May, R. M., Spatial games and the maintenance of cooperation, Proc. Natl Acad. Sci. USA, 91, 4877-4881 (1994) · Zbl 0799.92010
[36] Owen, M. R.; Lewis, M. A., How predation can slow, stop or reverse a prey invasion, Bull. Math. Biol., 63, 655-684 (2001) · Zbl 1323.92181
[37] Palsson, E.; Kyoung, L. J.; Goldstein, R. E.; Franke, J.; Kessin, R. H.; Cox, E. D., Selection for spiral waves in the social amoebae Dictyostelium, Proc. Natl Acad. Sci. USA, 94, 13719-13723 (1997)
[38] Panfilov, A. V., Spiral breakup as a model of ventricular fibrillation, Chaos, 8, 57-64 (1998) · Zbl 1069.92509
[39] Pascual, M., Diffusion-induced chaos in a spatial predator-prey system, Proc. R. Soc. London B. Biol., 251, 1-7 (1993)
[40] Rohani, P.; Miramontes, O., Chaos or quasiperiodicity in laboratory insect populations?, J. Anim. Ecol., 65, 6, 847-849 (1996)
[41] Rohani, P.; Ruxton, G. D., Dispersal-induced instabilities in host-parasitoid metapopulations, Theor. Popul. Biol., 55, 23-36 (1999) · Zbl 0917.92026
[42] Rohani, P.; Wearing, H. J.; Cameron, T.; Sait, S. M., Natural enemy specialisation and the period of population cycles, Ecol. Lett., 6, 381-384 (2003)
[43] Savill, N. J.; Rohani, P.; Hogeweg, P., Self-reinforcing spatial patterns enslave evolution in a host-parasitoid system, J. Theor. Biol., 188, 11-20 (1997)
[44] Schmidt, K., Incidental predation, enemy-free space and the coexistence of incidental prey, Oikos, 106, 335-343 (2004)
[45] Schofield, P. G.; Chaplain, M. A.J.; Hubbard, S. F., Mathematical modelling of host-parasitoid systems: effects of chemically mediated parasitoid foraging strategies on within- and between-generation spatio-temporal dynamics, J. Theor. Biol., 214, 31-47 (2002)
[46] Sherratt, J. A., On the evolution of periodic plane waves in reaction-diffusion systems of \(\lambda-\omega\) type, SIAM J. Appl. Math., 54, 5, 1374-1385 (1994) · Zbl 0806.35080
[47] Sherratt, J. A., Periodic travelling waves in cyclic predator-prey systems, Ecol. Lett., 352, 21-38 (2001)
[48] Sherratt, J. A.; Lewis, M. A.; Fowler, A. C., Ecological chaos in the wake of invasion, Proc. Natl Acad. Sci. USA, 92, 2524-2528 (1995) · Zbl 0819.92024
[49] Sherratt, J. A.; Eagen, B. T.; Lewis, M. A., Oscillations and chaos behind predator-prey invasion: mathematical artifact or ecological reality?, Philos. Trans. R. Soc. London B, 52, 5, 79-92 (1997)
[50] Tilman D., Kareiva, P. (Eds.), 1997. Spatial Ecology. Princeton University Press, USA.
[51] Tyson, J. J.; Alexander, V. S.; Manoranjan, V. S.; Murray, J. D., Spiral waves of cyclic-AMP in a model of slime mould aggregation, Physica D, 34, 193-207 (1989) · Zbl 0666.92011
[52] Vandermeer, J. H., Niche theory, Ann. Rev. Ecol. Syst., 3, 107-132 (1972)
[53] Vasiev, B. N., Classification of patterns in excitable systems with lateral inhibition, Phys. Lett. A, 323, 194-203 (2004) · Zbl 1118.81452
[54] Vos, M.; Hemerik, L.; Vet, L. E.M., Patch exploration by the parasitoids Cotesia rubecula and Cotesia glomerata in multi-patch environments with different host distributions, J. Anim. Ecol., 67, 774-783 (1998)
[55] Winfree, A. T., Mechanisms of cardiac fibrillation, Science, 270, 1222-1225 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.