×

Method of lines transpose: high order L-stable \(\mathcal O(N)\) schemes for parabolic equations using successive convolution. (English) Zbl 1339.65199

Summary: We present a new solver for nonlinear parabolic problems that is L-stable and achieves high order accuracy in space and time. The solver is built by first constructing a one-dimensional heat equation solver that uses fast \(\mathcal O(N)\) convolution. This fundamental solver has arbitrary order of accuracy in space and is based on the use of the Green’s function to invert a modified Helmholtz equation. Higher orders of accuracy in time are then constructed through a novel technique known as successive convolution (or resolvent expansions). These resolvent expansions facilitate our proofs of stability and convergence, and permit us to construct schemes that have provable stiff decay. The multidimensional solver is built by repeated application of dimensionally split independent fundamental solvers. Finally, we solve nonlinear parabolic problems by using the integrating factor method, where we apply the basic scheme to invert linear terms (that look like a heat equation), and make use of Hermite-Birkhoff interpolants to integrate the remaining nonlinear terms. Our solver is applied to several linear and nonlinear equations including heat, Allen-Cahn, and the FitzHugh-Nagumo system of equations in one and two dimensions.

MSC:

65M80 Fundamental solutions, Green’s function methods, etc. for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
35K55 Nonlinear parabolic equations
35K57 Reaction-diffusion equations
31A10 Integral representations, integral operators, integral equations methods in two dimensions

References:

[1] L. Abadias and P. J. Miana, {\it \(C_0\)-semigroups and Resolvent Operators Approximated by Laguerre Expansions}, preprint, http://arxiv.org/abs/1311.7542 arXiv:1311.7542, 2013. · Zbl 1357.33012
[2] S. M. Allen and J. W. Cahn, {\it A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening}, Acta Metall., 27 (1979), pp. 1085-1095.
[3] O. P. Bruno and M. Lyon, {\it High-order unconditionally stable FC-AD solvers for general smooth domains. I. Basic elements}, J. Comput. Phys., 229 (2010), pp. 2009-2033. · Zbl 1185.65184
[4] J. W. Cahn and J. E. Hilliard, {\it Spinodal decomposition: A reprise}, Acta Metall., 19 (1971), pp. 151-161.
[5] J. W. Cahn, {\it On spinodal decomposition}, Acta Metall., 9 (1961), pp. 795-801.
[6] M. Causley, A. Christlieb, B. Ong, and L. Van Groningen, {\it Method of lines transpose: An implicit solution to the wave equation}, Math. Comp., 83 (2014), pp. 2763-2786. · Zbl 1307.65122
[7] M. F. Causley and A. J. Christlieb, {\it Higher order A-stable schemes for the wave equation using a successive convolution approach}, SIAM J. Numer. Anal., 52 (2014), pp. 220-235, http://dx.doi.org/10.1137/130932685. · Zbl 1303.65078
[8] M. Causley, A. Christlieb, and E. Wolf, {\it Method of lines transpose: An efficient A-stable solver for wave propagation}, J. Sci. Comput., submitted; available online at http://arxiv.org/abs/1306.6902. · Zbl 1361.65070
[9] L. Chen and J. Shen, {\it Applications of semi-implicit Fourier-spectral method to phase field equations}, Comput. Phys. Comm., 108 (1998), pp. 147-158. · Zbl 1017.65533
[10] A. J. Christlieb, Y. Güçlü, and D. C. Seal, {\it The Picard integral formulation of weighted essentially nonoscillatory schemes}, SIAM J. Numer. Anal., 53 (2015), pp. 1833-1856, http://dx.doi.org/10.1137/140959936. · Zbl 1317.65169
[11] A. J. Christlieb, Y. Liu, and Z. Xu, {\it High order operator splitting methods based on an integral deferred correction framework}, J. Comput. Phys., 294 (2015), pp. 224-242. · Zbl 1349.65210
[12] J. Crank and P. Nicolson, {\it A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type}, Adv. Comput. Math., 6 (1996), pp. 207-226. · Zbl 0866.65054
[13] S. Dai and K. Promislow, {\it Geometric evolution of bilayers under the functionalized Cahn-Hilliard equation}, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 469 (2013), 20120505. · Zbl 1371.80027
[14] J. Douglas, Jr., {\it On the numerical integration of \(\frac{∂^2 u}{∂ x^2 } + \frac{∂^2 u}{∂ y^2 } = \frac{∂ u}{∂ t}\) by implicit methods}, J. Soc. Indust. Appl. Math., 3 (1955), pp. 42-65, http://dx.doi.org/10.1137/0103004. · Zbl 0067.35802
[15] J. Douglas, Jr., {\it Alternating direction methods for three space variables}, Numer. Math., 4 (1962), pp. 41-63. · Zbl 0104.35001
[16] J. Douglas, Jr., and H. Rachford, {\it On the numerical solution of heat conduction problems in two and three space variables}, Trans. Amer. Math. Soc., 82 (1956), pp. 421-439. · Zbl 0070.35401
[17] G. Fairweather and A. R. Mitchell, {\it A new computational procedure for A.D.I. methods}, SIAM J. Numer. Anal., 4 (1967), pp. 163-170, http://dx.doi.org/10.1137/0704016. · Zbl 0252.65072
[18] P. C. Fife, {\it Mathematical Aspects of Reacting and Diffusing Systems}, Springer-Verlag, Berlin, Heidelberg, 1979. · Zbl 0403.92004
[19] R. A. Fisher, {\it The Genetical Theory of Natural Selection: A Complete Variorum Edition}, Oxford University Press, Oxford, UK, 1999. · Zbl 1033.92022
[20] R. FitzHugh, {\it Impulses and physiological states in theoretical models of nerve membrane}, Biophys. J., 1 (1961), pp. 445-466.
[21] L. Greengard and J. Strain, {\it The fast Gauss transform}, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 79-94, http://dx.doi.org/10.1137/0912004. · Zbl 0721.65089
[22] V. Grimm and M. Gugat, {\it Approximation of semigroups and related operator functions by resolvent series}, SIAM J. Numer. Anal., 48 (2010), pp. 1826-1845, http://dx.doi.org/10.1137/090768084. · Zbl 1222.65052
[23] J. Jia and J. Huang, {\it Krylov deferred correction accelerated method of lines transpose for parabolic problems}, J. Comput. Phys., 227 (2008), pp. 1739-1753. · Zbl 1134.65064
[24] S. Jiang, L. Greengard, and S. Wang, {\it Efficient Sum-of-Exponentials Approximations for the Heat Kernel and Their Applications}, preprint, http://arxiv.org/abs/1308.3883, 2013. · Zbl 1318.31010
[25] A.-K. Kassam and L. N. Trefethen, {\it Fourth-order time-stepping for stiff PDEs}, SIAM J. Sci. Comput., 26 (2005), pp. 1214-1233, http://dx.doi.org/10.1137/S1064827502410633. · Zbl 1077.65105
[26] J. P. Keener and J. Sneyd, {\it Mathematical Physiology, Volume I: Cellular Physiology}, Springer, New York, 1998. · Zbl 1273.92017
[27] V. Krinsky and A. Pumir, {\it Models of defibrillation of cardiac tissue}, Chaos, 8 (1998), pp. 188-203.
[28] M. C. A. Kropinski and B. D. Quaife, {\it Fast integral equation methods for the modified Helmholtz equation}, J. Comput. Phys., 230 (2011), pp. 425-434. · Zbl 1207.65144
[29] J. V. Lambers, {\it Implicitly defined high-order operator splittings for parabolic and hyperbolic variable-coefficient PDE using modified moments}, Int. J. Pure Appl. Math., 50 (2009), pp. 239-244. · Zbl 1168.65401
[30] H. G. Lee and J.-Y. Lee, {\it A semi-analytical Fourier spectral method for the Allen-Cahn equation}, Comput. Math. Appl., 68 (2014), pp. 174-184. · Zbl 1369.65128
[31] J.-R. Li and L. Greengard, {\it High order accurate methods for the evaluation of layer heat potentials}, SIAM J. Sci. Comput., 31 (2009), pp. 3847-3860, http://dx.doi.org/10.1137/080732389. · Zbl 1204.65117
[32] Ch. Lubich and R. Schneider, {\it Time discretization of parabolic boundary integral equations}, Numer. Math., 63 (1992), pp. 455-481. · Zbl 0795.65061
[33] M. Lyon and O. P. Bruno, {\it High-order unconditionally stable FC-AD solvers for general smooth domains. II. Elliptic, parabolic and hyperbolic PDEs; theoretical considerations}, J. Comput. Phys., 229 (2010), pp. 3358-3381. · Zbl 1188.65139
[34] J. Nagumo, S. Arimoto, and S. Yoshizawa, {\it An active pulse transmission line simulating nerve axon}, Proc. IRE, 50 (1962), pp. 2061-2070.
[35] S. P. Nørsett, {\it One-step methods of Hermite type for numerical integration of stiff systems}, BIT, 14 (1974), pp. 63-77. · Zbl 0278.65078
[36] D. Olmos and B. D. Shizgal, {\it Pseudospectral method of solution of the Fitzhugh-Nagumo equation}, Math. Comput. Simulation, 79 (2009), pp. 2258-2278. · Zbl 1166.65382
[37] D. W. Peaceman and H. H. Rachford, Jr., {\it The numerical solution of parabolic and elliptic differential equations}, J. Soc. Indust. Appl. Math., 3 (1955), pp. 28-41, http://dx.doi.org/10.1137/0103003. · Zbl 0067.35801
[38] E. Rothe, {\it Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben}, Math. Ann., 102 (1930), pp. 650-670. · JFM 56.1076.02
[39] A. J. Salazar, M. Raydan, and A. Campo, {\it Theoretical analysis of the exponential transversal method of lines for the diffusion equation}, Numer. Methods Partial Differential Equations, 16 (2000), pp. 30-41. · Zbl 0953.65063
[40] D. C. Seal, Y. Güçlü, and A. J. Christlieb, {\it High-order multiderivative time integrators for hyperbolic conservation laws}, J. Sci. Comput., 60 (2014), pp. 101-140. · Zbl 1304.65223
[41] J. Shen and X. Yang, {\it Numerical approximations of Allen-Cahn and Cahn-Hilliard equations}, Discrete Contin. Dyn. Syst., 28 (2010), pp. 1669-1691. · Zbl 1201.65184
[42] S. E. Shreve, {\it Stochastic Calculus for Finance II: Continuous-Time Models}, Springer Finance, Springer-Verlag, New York, 2004. · Zbl 1068.91041
[43] J. Starobin and C. Starmer, {\it Common mechanism links spiral wave meandering and wave-front-obstacle separation}, Phys. Rev. E, 55 (1997), 1193.
[44] J. Tausch, {\it A fast method for solving the heat equation by layer potentials}, J. Comput. Phys., 224 (2007), pp. 956-969. · Zbl 1120.65329
[45] F. Xie, Z. Qu, J. N. Weiss, and A. Garfinkel, {\it Coexistence of multiple spiral waves with independent frequencies in a heterogeneous excitable medium}, Phys. Rev. E, 63 (2001), 031905.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.