×

On the constraints problem for the Einstein-Yang-Mills-Higgs system. (English) Zbl 1304.35682

Author’s abstract: We provide proofs of some key propositions that were used in previous work by M. Dossa and the author [AMRX, Appl. Math. Res. Express 2010, 154–231 (2010; Zbl 1205.35162)] and by F. Hirosawa [in: Further progress in analysis. Proceedings of the 6th international ISAAC congress, Ankara, Turkey, August 13–18, 2007. Hackensack, NJ: World Scientific. 444–453 (2009; Zbl 1184.35086)] dealing with the characteristic initial value problem for the Einstein-Yang-Mills-Higgs (EYMH) system. The aforesaid proofs were missing, making the considered work difficult to understand. This work is presented with a view to have an almost self-contained paper. With this respect we completely recall the process of constructing initial data for the EYMH system on two intersecting smooth null hypersurfaces as done in the work of Dossa and Tadmon mentioned above. This is achieved by successfully adapting the hierarchical method set up by A. D. Rendall [Pitman Res. Notes Math. Ser. 253, 154–163 (1992; Zbl 0795.35127)] to solve the same problem for the Einstein equations in vacuum and with perfect fluid source. Many delicate calculations and expressions are given in details so as to address, in a forthcoming work, the issue of global resolution of the characteristic initial value problem for the EYMH system. The method obviously applies to the Einstein-Maxwell and the Einstein-scalar field models as well.

MSC:

35Q75 PDEs in connection with relativity and gravitational theory
35L15 Initial value problems for second-order hyperbolic equations
35L70 Second-order nonlinear hyperbolic equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46J10 Banach algebras of continuous functions, function algebras
81T13 Yang-Mills and other gauge theories in quantum field theory
83C10 Equations of motion in general relativity and gravitational theory
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
Full Text: DOI

References:

[1] Balakin A. B., Dehnen H., Zayats A. E.: Effective metrics in the nonminimal Einstein-Yang-Mills-Higgs theory. Ann. Physics 323, 2183-2207 (2008) · Zbl 1155.81031 · doi:10.1016/j.aop.2008.04.003
[2] Cabet A., Local existence of a solution of a semilinear wave equation with gradient in a neighborhood of initial characteristic hypersurfaces of a Lorentzian manifold. Comm. Partial Differential Equations 33, 2105-2156 (2008) · Zbl 1170.35063 · doi:10.1080/03605300802501335
[3] Caciotta G., Nicolo F.: Global characteristic problem for Einstein vacuum equations with small initial data. I. The initial data constraints. J. Hyperbolic Differ. Equ. 2, 201-277 (2005) · Zbl 1082.35151 · doi:10.1142/S0219891605000439
[4] Cagnac F.: Problème de Cauchy sur un conoïde caractéristique pour des équations quasi-linéaires. Ann. Mat. Pura Appl. 4(129), 13-41 (1981) · Zbl 0486.35023 · doi:10.1007/BF01762134
[5] Cagnac F.: Problème de Cauchy sur un conoïde caractéristique. Ann. Fac. Sci. Toulouse Math. 5(2), 11-19 (1980) · Zbl 0458.35069 · doi:10.5802/afst.542
[6] F. Cagnac and M. Dossa, Problème de Cauchy sur un conoïde caractéristique. Applications à certains systèmes non linéaires d origine physique. In: Physics on Manifolds (Proceedings of the International Colloquium in honour of Yvonne Choquet-Bruhat, Paris, 1992), Math. Phys. Stud. 15, Kluwer Academic Publishers, 1994, 35-47. · Zbl 0830.35049
[7] Choquet-Bruhat Y., Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, 141-225 (1952) · Zbl 0049.19201 · doi:10.1007/BF02392131
[8] Choquet-Bruhat Y., Yang-Mills-Higgs fields in three space-time dimensions. Mém. Soc. Math. Fr. (N.S.) 46, 73-97 (1991) · Zbl 0773.53036
[9] Y. Choquet-Bruhat and D. Christodoulou, Existence of global solutions of the Yang-Mills, Higgs and spinor field equations in 3+1 dimensions. Ann. Sci. Éc. Norm. Supér. (4) 14 (1981), 481-506. · Zbl 0499.35076
[10] D. Christodoulou, The formation of black holes in general relativity. EMS Monogr. Math., European Mathematical Society (EMS), Zürich, 2009. · Zbl 1197.83004
[11] D. Christodoulou and H. Müller zum Hagen, Problème de valeur initiale caractéristique pour des systèmes quasi linéaires du second ordre. C. R. Math. Acad. Sci. Paris 293 (1981), 39-42. · Zbl 0481.35059
[12] Damour T., Schmidt B., Reliability of perturbation theory in general relativity. J. Math. Phys. 31, 2241-2453 (1990) · Zbl 0723.53050 · doi:10.1063/1.528850
[13] Dossa M., Espaces de Sobolev non isotropes, à poids et problèmes de Cauchy quasi-linéaires sur un conoïde caract éristique. Ann. Inst. H. Poincaré Phys. Théor. 66, 37-107 (1997) · Zbl 0880.35074
[14] Dossa M., Tadmon C., The Goursat problem for the Einstein-Yang-Mills-Higgs system in weighted Sobolev spaces. C. R. Math. Acad. Sci. Paris 348, 35-39 (2010) · Zbl 1184.35085 · doi:10.1016/j.crma.2009.11.014
[15] M. Dossa and C. Tadmon, The characteristic initial value problem for the Einstein-Yang-Mills-Higgs system in weighted Sobolev spaces. Appl. Math. Res. Express. AMRX 2010 (2010), 154-231. · Zbl 1205.35162
[16] G. F. R. Ellis et al., Ideal observational cosmology. Phys. Rep. 124 (1985), 315-417. · Zbl 1155.81031
[17] F. G. Friedlander, On the radiation field of pulse solutions of the wave equations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 269 (1962), 53-65. · Zbl 0106.41501
[18] Friedlander F.G.: On the radiation field of pulse solutions of the wave equations. II. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 279, 386-394 (1964) · Zbl 0117.43904
[19] Friedlander F.G.: On the radiation field of pulse solutions of the wave equations. III. Proc. R. Soc. Lond. Ser. AMath. Phys. Eng. Sci. 299, 264-278 (1967) · Zbl 0163.23702 · doi:10.1098/rspa.1967.0134
[20] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time. Cambridge University Press, London, 1973. · Zbl 0265.53054
[21] Houpa D.E., Dossa M., Problèmes de Goursat pour les systèmes semilinéaires hyperboliques. C. R. Math. Acad. Sci. Paris 341, 15-20 (2005) · Zbl 1068.35060 · doi:10.1016/j.crma.2005.05.002
[22] Kannar J., On the existence of C∞ solution to the asymptotic characteristic initial value problem in general relativity. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 452, 945-952 (1996) · Zbl 0863.53056 · doi:10.1098/rspa.1996.0047
[23] Lindblad H., Rodnianski I., Global existence for the Einstein vacuum equations in wave coordinates. Comm. Math. Phys. 256, 43-110 (2005) · Zbl 1081.83003 · doi:10.1007/s00220-004-1281-6
[24] H. Müller zum Hagen and F. H. Jürgen Seifert, On characteristic initial-value and mixed problems. General Relativity and Gravitation 8 (1977), 259-301. · Zbl 0417.35052
[25] H. Müller zum Hagen, Characteristic initial value problem for hyperbolic systems of second order differential equations. Ann. Inst. H. Poincaré, Phys. Théor. 53 (1990), 159-216. · Zbl 0739.35039
[26] Rendall A.D., Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 427, 221-239 (1990) · Zbl 0701.35149 · doi:10.1098/rspa.1990.0009
[27] A. D. Rendall, The characteristic initial value problem for the Einstein equations. In: Nonlinear Hyperbolic Equations and Field Theory (Lake Como, 1990), Pitman Res. Notes Maths. Ser. 253, Longman Sci. Tech., Harlow, 1992, 154-163. · Zbl 1170.35063
[28] J. M. Stewart, Numerical relativity. In: Classical General Relativity (London, 1983), Cambridge University Press, Cambridge, 1984. · Zbl 0863.53056
[29] J. M. Stewart and H. Friedrich, Numerical relativity. I. The characteristic initial value problem. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 384 (1982), 427-454. · Zbl 0541.65089
[30] Svedberg C.: Future stability of the Einstein-Maxwell-scalar field system. Ann. Henri Poincaré 12, 849-917 (2011) · Zbl 1218.83015 · doi:10.1007/s00023-011-0099-y
[31] Volkov M.S., Gal’tsov D.V., Gravitating non-abelian solitons and black holes with Yang-Mills fields. Phys. Rep. 319, 1-83 (1999) · doi:10.1016/S0370-1573(99)00010-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.