×

An automatic regularization parameter selection algorithm in the total variation model for image deblurring. (English) Zbl 1296.68183

Summary: Image restoration is an inverse problem that has been widely studied in recent years. The total variation based model by Rudin-Osher-Fatemi [L. I. Rudin et al., Physica D 60, No. 1–4, 259–268 (1992; Zbl 0780.49028)] is one of the most effective and well known due to its ability to preserve sharp features in restoration. This paper addresses an important and yet outstanding issue for this model in selection of an optimal regularization parameter, for the case of image deblurring. We propose to compute the optimal regularization parameter along with the restored image in the same variational setting, by considering a Karush Kuhn Tucker (KKT) system. Through establishing analytically the monotonicity result, we can compute this parameter by an iterative algorithm for the KKT system. Such an approach corresponds to solving an equation using discrepancy principle, rather than using discrepancy principle only as a stopping criterion. Numerical experiments show that the algorithm is efficient and effective for image deblurring problems and yet is competitive.

MSC:

68U10 Computing methodologies for image processing
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
49N70 Differential games and control
49N75 Pursuit and evasion games
62H35 Image analysis in multivariate analysis

Citations:

Zbl 0780.49028

Software:

na28
Full Text: DOI

References:

[1] Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10, 1217-1229 (1994) · Zbl 0809.35151 · doi:10.1088/0266-5611/10/6/003
[2] Afonso, M., Boiucas-Dias, J., Figuereido, M.: An augmented lagrangian approach to the constrained optimization Formulation of Imaging Inverse Problems. IEEE Trans. Image Process. 20(3), 681-695 (2011) · Zbl 1372.94004 · doi:10.1109/TIP.2010.2076294
[3] Afonso, M., Boiucas-Dias, J., Figuereido, M.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345-2356 (2010) · Zbl 1371.94018 · doi:10.1109/TIP.2010.2047910
[4] Bardsley, J., Goldes, J.: Regularization parameter selection and an efficient algorithm for total variation-regularized positron emission tomography. Num. Alg. 57, 255-271 (2011) · Zbl 1217.65117 · doi:10.1007/s11075-010-9427-4
[5] Blomgren, P., Chan, T., Color, T.V.: Total variation methods for restoration of vector-valued images. IEEE Trans. Image Process. 7(3), 304-309 (1998) · doi:10.1109/83.661180
[6] Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492-526 (2010) · Zbl 1195.49025 · doi:10.1137/090769521
[7] Brito, C., Chen, K.: Multigrid algorithm for high order denoising. SIAM J. Imaging Sci. 3(3), 363-389 (2010) · Zbl 1205.68474 · doi:10.1137/080737903
[8] Buades, A., Coll, B., Morel, J.: A review of image denoising algorithms with a new one. SIAM Multiscale Modeling Simul. 4(2), 490-530 (2005) · Zbl 1108.94004 · doi:10.1137/040616024
[9] Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167-188 (1997) · Zbl 0874.68299 · doi:10.1007/s002110050258
[10] Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imag. Vis. 20, 89-97 (2004) · Zbl 1366.94048 · doi:10.1023/B:JMIV.0000011320.81911.38
[11] Chan, T., Osher, S.: The digital TV filter and nonlinear denoising. IEEE Trans. Image Process. 10(2), 231-241 (2001) · Zbl 1039.68778 · doi:10.1109/83.902288
[12] Chan, T.F., Shen, J.: Image processing and analysis: variational, PDE, wavelet and stochastic methods. SIAM (2005) · Zbl 1095.68127
[13] Chan, T., Tai, X.: Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comp. Phy. 193, 40-66 (2003) · Zbl 1036.65086 · doi:10.1016/j.jcp.2003.08.003
[14] Chan, R., Chen, K.: A multilevel algorithm for simoultaneously denoising and deblurring images. Siam J. Sci. Comp. 32(2), 1043-1063 (2010) · Zbl 1217.68235 · doi:10.1137/080741410
[15] Chan, T., Chen, K.: An optimization-based multilevel algorithm for total variation image denoising. Multiscale Model. Simul. 5, 615-645 (2006) · Zbl 1120.68108 · doi:10.1137/050644999
[16] Dembo, R., Steihaug, T.: Truncated-Newton algorithms for large-scale unconstrained optimization. Math. Program. 26, 190-212 (1983) · Zbl 0523.90078 · doi:10.1007/BF02592055
[17] Dong, Y., Hintermüller, M., Rincon-Camacho, M.M.: Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Image Vis. 40(1), 83-104 (2011) · Zbl 1255.68230
[18] Hanke, M.: Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems. Num. Func. Anal. Optim. 18, 971-993 (1997) · Zbl 0899.65038 · doi:10.1080/01630569708816804
[19] Hanke, M.; Nagy, JG; Plemmons, RJ; Reichel, L. (ed.); Ruttan, A. (ed.); Varga, RS (ed.), Preconditioned iterative regularization for ill-posed problems, 141-163 (1993), Berlin · Zbl 0794.65039
[20] Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM publications, Philadelphia (2006) · Zbl 1112.68127 · doi:10.1137/1.9780898718874
[21] Hansen, P.C. et al.: Algorithms and software for total variation image reconstruction via first-order methods. Num. Alg. 53(1), 67-92 (2010) · Zbl 1181.94009 · doi:10.1007/s11075-009-9310-3
[22] Huang, Y., Ng, M., Wen, Y.: A fast total variation minimization method for image restoration. Multiscale Model. Simul. 7, 774-795 (2008) · Zbl 1172.94316 · doi:10.1137/070703533
[23] Martin, D.R., Reichel, L.: Projected Tikhonov regularization of large-scale discrete ill-posed problems, J. Sci. Comput. 56, 471-493 (2013) · Zbl 1280.65038
[24] Abad, J.O., Morigi, S., Reichel, L., Sgallari, F.: Alternating Krylov subspace image restoration methods. J. Comput. Appl. Math. 236, 2049-2062 (2012) · Zbl 1251.65091 · doi:10.1016/j.cam.2011.09.030
[25] Loli Piccolomini, E., Zama, F.: A descent method for the regularization of ill-posed problems. Optim. Methods Softw. 20(4-5), 615-628 (2005) · Zbl 1086.65054
[26] Loli Piccolomini, E., Zama, F.: An iterative algorithm for large size least-squares constrained regularization problems. Appl. Math. Comput. 217, 10343-10354 (2011) · Zbl 1228.65061 · doi:10.1016/j.amc.2011.04.086
[27] Reichel, L., Rodriguez, G.: Old and new parameter choice rules for discrete ill-posed problems. Num. Alg. 63, 65-87 (2013) · Zbl 1267.65045 · doi:10.1007/s11075-012-9612-8
[28] Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259-268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[29] Tadmor, E., Nezzen, S., Vese, L.: Multiscale hierarchical decomposition of images with applications to deblurring, denoising and segmentation. Comm. Math. Sci. 6, 1-26 (2008) · Zbl 1165.35471 · doi:10.4310/CMS.2008.v6.n1.a1
[30] Vogel, C.R., Oman, M.E.: Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans. Image Processing 7, 813-824 (1998) · Zbl 0993.94519 · doi:10.1109/83.679423
[31] Vogel, C.R.: Computational Methods for Inverse Problems. SIAM Publications, USA (2002) · Zbl 1008.65103 · doi:10.1137/1.9780898717570
[32] Wen, Y., Chan, R.: Parameter selection for total variation based image restoration using discrepancy principle. IEEE TRans. Image Proc. 21(4), 1770-1781 (2012) · Zbl 1373.94440 · doi:10.1109/TIP.2011.2181401
[33] Wen, Y., Ng, M., Ching, W.K.: Iterative algorithms based on decoupling of deblurring and denoising for image restoration. Siam J. Sci. Comp. 30, 2655-2674 (2008) · Zbl 1172.94333 · doi:10.1137/070683374
[34] Zhang, J.P., Chen, K., Yu, B.: An iterative lagrange multiplier method for constrained total-variation-based image denoising. SIAM J. Numer. Anal. 50(3), 983-1003 (2012) · Zbl 06070606 · doi:10.1137/110829209
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.