×

Sticky couplings of multidimensional diffusions with different drifts. (English. French summary) Zbl 1434.60213

Summary: We present a novel approach of coupling two multi-dimensional and non-degenerate Itô processes \((X_t)\) and \((Y_t)\) which follow dynamics with different drifts. Our coupling is sticky in the sense that there is a stochastic process \((r_t)\), which solves a one-dimensional stochastic differential equation with a sticky boundary behavior at zero, such that almost surely \(|X_t-Y_t|\leq r_t\) for all \(t\geq0\). The coupling is constructed as a weak limit of Markovian couplings. We provide explicit, non-asymptotic and long-time stable bounds for the probability of the event \(\{X_t=Y_t\} \).

MSC:

60J60 Diffusion processes
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

References:

[1] M. Amir. Sticky Brownian motion as the strong limit of a sequence of random walks. Stochastic Process. Appl. 39 (2) (1991) 221-237. · Zbl 0744.60097 · doi:10.1016/0304-4149(91)90080-V
[2] R. F. Bass. A stochastic differential equation with a sticky point. Electron. J. Probab. 19 (32) (2014), 22. · Zbl 1291.60113
[3] V. I. Bogachev, A. I. Kirillov and S. V. Shaposhnikov. The Kantorovich and variation distances between invariant measures of diffusions and nonlinear stationary Fokker-Planck-Kolmogorov equations. Math. Notes 96 (5-6) (2014) 855-863. · Zbl 1315.35221
[4] V. I. Bogachev, M. Röckner and S. V. Shaposhnikov. Distances between transition probabilities of diffusions and applications to nonlinear Fokker-Planck-Kolmogorov equations. J. Funct. Anal. 271 (5) (2016) 1262-1300. · Zbl 1345.35051
[5] M. F. Chen and S. F. Li. Coupling methods for multidimensional diffusion processes. Ann. Probab. 17 (1) (1989) 151-177. · Zbl 0686.60083 · doi:10.1214/aop/1176991501
[6] M. F. Chen and F. Y. Wang. Estimation of the first eigenvalue of second order elliptic operators. J. Funct. Anal. 131 (2) (1995) 345-363. · Zbl 0837.35102 · doi:10.1006/jfan.1995.1092
[7] M. F. Chen and F. Y. Wang. Estimation of spectral gap for elliptic operators. Trans. Amer. Math. Soc. 349 (3) (1997) 1239-1267. · Zbl 0872.35072 · doi:10.1090/S0002-9947-97-01812-6
[8] R. Chitashvili. On the nonexistence of a strong solution in the boundary problem for a sticky Brownian motion. Proc. A. Razmadze Math. Inst. 115 (1997) 17-31. · Zbl 0914.60026
[9] G. Da Prato, A. Debussche and L. Tubaro. Coupling for some partial differential equations driven by white noise. Stochastic Process. Appl. 115 (8) (2005) 1384-1407. · Zbl 1079.60061 · doi:10.1016/j.spa.2005.03.010
[10] A. DasGupta. Probability for Statistics and Machine Learning. Springer Texts in Statistics. Springer, New York, 2011. · Zbl 1233.62001
[11] A. Durmus and E. Moulines. Sampling from strongly log-concave distributions with the Unadjusted Langevin Algorithm. ArXiv e-prints, 2016.
[12] A. Eberle. Reflection coupling and Wasserstein contractivity without convexity. C. R. Math. Acad. Sci. Paris 349 (19-20) (2011) 1101-1104. · Zbl 1229.60091 · doi:10.1016/j.crma.2011.09.003
[13] A. Eberle. Reflection couplings and contraction rates for diffusions. Probab. Theory Related Fields 166 (3-4) (2016) 851-886. · Zbl 1367.60099 · doi:10.1007/s00440-015-0673-1
[14] A. Eberle, A. Guillin and R. Zimmer. Couplings and quantitative contraction rates for Langevin dynamics. Ann. Probab. (2018). To appear. · Zbl 1466.60160 · doi:10.1214/18-AOP1299
[15] A. Eberle, A. Guillin and R. Zimmer. Quantitative Harris-type theorems for diffusions and McKean-Vlasov processes. Transactions of the American Mathematical Society (2018). · Zbl 1481.60154 · doi:10.1090/tran/7576
[16] H. J. Engelbert and G. Peskir. Stochastic differential equations for sticky Brownian motion. Stochastics 86 (6) (2014) 993-1021. · Zbl 1337.60120 · doi:10.1080/17442508.2014.899600
[17] S. N. Ethier and T. G. Kurtz. Markov Processes: Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York, 1986. · Zbl 0592.60049
[18] W. Feller. Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77 (1954) 1-31. · Zbl 0059.11601 · doi:10.1090/S0002-9947-1954-0063607-6
[19] W. Feller. The general diffusion operator and positivity preserving semi-groups in one dimension. Ann. of Math. (2) 60 (1954) 417-436. · Zbl 0057.09805 · doi:10.2307/1969842
[20] C. Graham. The martingale problem with sticky reflection conditions, and a system of particles interacting at the boundary. Ann. Inst. Henri Poincaré Probab. Stat. 24 (1) (1988) 45-72. · Zbl 0643.60042
[21] M. Grothaus and R. Voßhall. Construction and analysis of sticky reflected diffusions. ArXiv e-prints, 2014. · Zbl 1342.60166
[22] M. Grothaus and R. Voßhall. Strong Feller property of sticky reflected distorted Brownian motion. J. Theoret. Probab. 31 (2) (2018) 827-852. · Zbl 1429.60073 · doi:10.1007/s10959-016-0735-z
[23] H. Hajri, M. Caglar and M. Arnaudon. Application of stochastic flows to the sticky Brownian motion equation. Electron. Commun. Probab. 22 (2017) 3. · Zbl 1357.60083 · doi:10.1214/16-ECP37
[24] J. M. Harrison and A. J. Lemoine. Sticky Brownian motion as the limit of storage processes. J. Appl. Probab. 18 (1) (1981) 216-226. · Zbl 0453.60072 · doi:10.1017/S0021900200097758
[25] M. Hofmanová and J. Seidler. On weak solutions of stochastic differential equations. Stoch. Anal. Appl. 30 (1) (2012) 100-121. · Zbl 1241.60025
[26] M. Hofmanová and J. Seidler. On weak solutions of stochastic differential equations II. Stoch. Anal. Appl. 31 (4) (2013) 663-670. · Zbl 1277.60106 · doi:10.1080/07362994.2013.799025
[27] C. J. Howitt. Stochastic flows and sticky brownian motion. PhD Thesis, University of Warwick, 2007.
[28] N. Ikeda. On the construction of two-dimensional diffusion processes satisfying Wentzell’s boundary conditions and its application to boundary value problems. Mem. Coll. Sci., Univ. Kyoto, Ser. A: Math. 33 (1960/1961) 367-427. · Zbl 0102.13903 · doi:10.1215/kjm/1250711995
[29] N. Ikeda and S. Watanabe. A comparison theorem for solutions of stochastic differential equations and its applications. Osaka J. Math. 14 (3) (1977) 619-633. · Zbl 0376.60065
[30] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes, 2nd edition. North-Holland Mathematical Library 24. North-Holland, Amsterdam; Kodansha, Tokyo, 1989. · Zbl 0684.60040
[31] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes, 2nd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288. Springer-Verlag, Berlin, 2003. · Zbl 1018.60002
[32] Y. M. Kabanov, R. Sh. Liptser and A. N. Shiryaev. On the variation distance for probability measures defined on a filtered space. Probab. Theory Related Fields 71 (1) (1986) 19-35. · Zbl 0554.60006 · doi:10.1007/BF00366270
[33] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus, 2nd edition. Graduate Texts in Mathematics 113. Springer-Verlag, New York, 1991. · Zbl 0734.60060
[34] A. Klenke. Probability Theory. A Comprehensive Course, 2nd edition. Universitext. Springer, London, 2014. · Zbl 1295.60001
[35] F. Liese. Hellinger integrals of diffusion processes. Statistics 17 (1) (1986) 63-78. · Zbl 0598.60042 · doi:10.1080/02331888608801912
[36] F. Liese and W. Schmidt. On the strong convergence, contiguity and entire separation of diffusion processes. Stoch. Stoch. Rep. 50 (3-4) (1994) 185-203. · Zbl 0832.60064 · doi:10.1080/17442509408833935
[37] T. Lindvall and L. C. G. Rogers. Coupling of multidimensional diffusions by reflection. Ann. Probab. 14 (3) (1986) 860-872. · Zbl 0593.60076 · doi:10.1214/aop/1176992442
[38] P. Mandl. Analytical Treatment of One-Dimensional Markov Processes. Die Grundlehren der mathematischen Wissenschaften 151. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague; Springer-Verlag, New York, 1968.
[39] O. Manita. Estimates for Kantorovich functionals between solutions to Fokker-Planck-Kolmogorov equations with dissipative drifts. ArXiv e-prints, 2015.
[40] H. P. McKean Jr. A. Skorohod’s stochastic integral equation for a reflecting barrier diffusion. J. Math. Kyoto Univ. 3 (1963) 85-88. · Zbl 0202.46601
[41] S. Méléard. Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models. In Probabilistic Models for Nonlinear Partial Differential Equations 42-95. Montecatini Terme, 1995. Lecture Notes in Math. 1627. Springer, Berlin, 1996. · Zbl 0864.60077
[42] G. Peskir. On boundary behaviour of one-dimensional diffusions: From brown to Feller and beyond. In William Feller - Selected Papers II. Springer, Berlin, 2015.
[43] E. Priola and F. Y. Wang. Gradient estimates for diffusion semigroups with singular coefficients. J. Funct. Anal. 236 (1) (2006) 244-264. · Zbl 1110.47035 · doi:10.1016/j.jfa.2005.12.010
[44] P. E. Protter. Stochastic Integration and Differential Equations. Stochastic Modelling and Applied Probability 21. 2nd edition. Springer-Verlag, Berlin, 2005. (Version 2.1, Corrected third printing.)
[45] M. Z. Rácz and M. Shkolnikov. Multidimensional sticky Brownian motions as limits of exclusion processes. Ann. Appl. Probab. 25 (3) (2015) 1155-1188. · Zbl 1315.60111 · doi:10.1214/14-AAP1019
[46] A. V. Skorokhod. Stochastic equations for diffusion processes in a bounded region. Theory Probab. Appl. 6 (3) (1961) 264-274. · Zbl 0215.53501
[47] A. V. Skorokhod. Stochastic equations for diffusion processes in a bounded region. II. Theory Probab. Appl. 7 (1) (1962) 3-23. · Zbl 0201.49302 · doi:10.1137/1107002
[48] D. W. Stroock and S. R. S. Varadhan. Diffusion processes with boundary conditions. Comm. Pure Appl. Math. 24 (1971) 147-225. · Zbl 0227.76131 · doi:10.1002/cpa.3160240206
[49] D. W. Stroock and S. R. S. Varadhan. Multidimensional Diffusion Processes. Classics in Mathematics. Springer-Verlag, Berlin, 2006. Reprint of the 1997 edition. · Zbl 1103.60005
[50] A. S. Sznitman. Topics in propagation of chaos. In École d’Été de Probabilités de Saint-Flour XIX—1989 165-251. Lecture Notes in Math. 1464. Springer, Berlin, 1991. · Zbl 0732.60114
[51] C. Villani. Optimal Transport. Old and New. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 338. Springer-Verlag, Berlin, 2009. · Zbl 1156.53003
[52] J. Warren. Branching processes, the Ray-Knight theorem, and sticky Brownian motion. In Séminaire de Probabilités, XXXI 1-15. Lecture Notes in Math. 1655. Springer, Berlin, 1997. · Zbl 0884.60081
[53] S. Watanabe. On stochastic differential equations for multi-dimensional diffusion processes with boundary conditions. J. Math. Kyoto Univ. 11 (1971) 169-180. · Zbl 0212.20203 · doi:10.1215/kjm/1250523692
[54] S. Watanabe. On stochastic differential equations for multi-dimensional diffusion processes with boundary conditions. II. J. Math. Kyoto Univ. 11 (1971) 545-551. · Zbl 0229.60038 · doi:10.1215/kjm/1250523619
[55] R. Zimmer. Explicit contraction rates for a class of degenerate and infinite-dimensional diffusions. In Stochastics and Partial Differential Equations: Analysis and Computations 368-399, 5, 2017. · Zbl 1386.60209 · doi:10.1007/s40072-017-0091-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.