×

A lattice in more than two Kac-Moody groups is arithmetic. (English) Zbl 1259.20058

The paper under review studies lattices \(\Gamma\subset G_1\times\cdots\times G_n\) in products of (closed, co-compactly acting subgroups of) isometry groups of CAT(0)-spaces.
The main result states that if \(n\geq 3\), all \(G_i\) are irreducible complete Kac-Moody groups of simply laced type over a finite field and the projection of \(\Gamma\) to each \(G_i\) is faithful, then all \(G_i\) are topologically commensurable to semi-simple algebraic groups \(G_i'\) over a local field and \(\Gamma\) is an S-arithmetic lattice. (“Topologically commensurable” means that \(G_i\) contains a co-compact normal subgroup which is a compact extension of \(G_i'\).)
The proof relies on the following arithmeticity vs.non-residual-finiteness alternative. If \(n\geq 2\) and at least one factor is an infinite irreducible complete Kac-Moody group of simply laced type over a finite field, then either \(\Gamma\) is S-arithmetic or \(\Gamma\) is not residually finite.
As a consequence, topologically irreducible lattices in products of certain Kac-Moody groups (over sufficiently large finite fields) have discrete commensurators and are thus contained in a unique maximal lattice, and they satisfy an arithmeticity vs.simplicity alternative. More generally, the authors obtain that a finitely generated group \(\Gamma\) without non-trivial infinite index normal subgroup, which acts by isometries faithfully, minimally and without fixed point at infinity on an irreducible proper CAT(0)-space, must be either residually finite or virtually simple.
Section 2 also provides an extensive discussion about to which extent several notions of irreducibility for lattices \(\Gamma\subset G_1\times\cdots\times G_n\) are equivalent or not.

MSC:

20G44 Kac-Moody groups
22E40 Discrete subgroups of Lie groups
20F65 Geometric group theory
20F67 Hyperbolic groups and nonpositively curved groups
57S30 Discontinuous groups of transformations
20G25 Linear algebraic groups over local fields and their integers
53C20 Global Riemannian geometry, including pinching

References:

[1] Y. Barnea, M. Ershov and T. Weigel, Abstract commensurators of profinite groups, Transactions of the American Mathematical Society 363 (2011), 5381–5417. · Zbl 1244.20026 · doi:10.1090/S0002-9947-2011-05295-5
[2] A. Borel and G. Harder, Existence of discrete cocompact subgroups of reductive groups over local fields, Journal für die Reine und Angewandte Mathematik 298 (1978), 53–64. · Zbl 0385.14014
[3] M. R. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, Vol. 319, Springer, Berlin, 1999. · Zbl 0988.53001
[4] M. Burger and S. Mozes, Lattices in product of trees, Publications Mathématiques. Institut de Hautes études Scientifiques (2000), pno. 92, 151–194 (2001). · Zbl 1007.22013
[5] A. Borel, Density properties for certain subgroups of semi-simple groups without compact components, Annals of Mathematics. Second Series 72 (1960), 179–188. · Zbl 0094.24901 · doi:10.2307/1970150
[6] A. Borel, Density and maximality of arithmetic subgroups, Journal für die Reine und Angewandte Mathematik 224 (1966), 78–89. · Zbl 0158.03105
[7] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968. · Zbl 0186.33001
[8] N. Bourbaki, Éléments de mathématique. Topologie générale. Chapitres 1 à 4, Hermann, Paris, 1971.
[9] U. Bader and Y. Shalom, Factor and normal subgroup theorems for lattices in products of groups, Inventiones Mathematicae 163 (2006), 415–454. · Zbl 1085.22005 · doi:10.1007/s00222-005-0469-5
[10] A. Borel and J. Tits, Homomorphismes ”abstraits” de groupes algébriques simples, Annals of Mathematics. Second Series 97 (1973), 499–571. · Zbl 0272.14013 · doi:10.2307/1970833
[11] L. Carbone, M. Ershov and G. Ritter, Abstract simplicity of complete Kac-Moody groups over finite fields, Journal of Pure and Applied Algebra 212 (2008), 2147–2162. · Zbl 1157.20018 · doi:10.1016/j.jpaa.2008.03.023
[12] L. Carbone and H. Garland, Lattices in Kac-Moody groups, Mathematical Research Letters 6 (1999), 439–448. · Zbl 0954.22014 · doi:10.4310/MRL.1999.v6.n4.a6
[13] P.-E. Caprace and F. Haglund, On geometric flats in the CAT(0) realization of Coxeter groups and Tits buildings, Canadian Journal of Mathematics 61 (2009), 740–761. · Zbl 1231.20034 · doi:10.4153/CJM-2009-040-8
[14] P.-E. Caprace and N. Monod, Some properties of non-positively curved lattices, Comptes Rendus Mathématique. Académie des Sciences. Paris 346 (2008), 857–862. · Zbl 1155.22015 · doi:10.1016/j.crma.2008.07.006
[15] P.-E. Caprace and N. Monod, Isometry groups of non-positively curved spaces: structure theory, Journal of Topology 2 (2009), 661–700 · Zbl 1209.53060 · doi:10.1112/jtopol/jtp026
[16] P.-E. Caprace and N. Monod, Isometry groups of non-positively curved spaces: discrete subgroups, Journal of Topology 2 (2009), 701–746 · Zbl 1187.53037 · doi:10.1112/jtopol/jtp027
[17] P.-E. Caprace and N. Monod, Fixed points and amenability in non-positive curvature, in preparation. · Zbl 1280.53037
[18] P.-E. Caprace and B. Rémy, Simplicity and superrigidity of twin building lattices, Inventiones Mathematicae 176 (2009), 169–221. · Zbl 1173.22007 · doi:10.1007/s00222-008-0162-6
[19] D. I. Cartwright and T. Steger, A family of à n-groups, Israel Journal of Mathematics 103 (1998), 125–140. · Zbl 0923.51010 · doi:10.1007/BF02762271
[20] M. Davis, Buildings are CAT(0), in Geometry and Cohomology in Group Theory (Durham, 1994), London Mathematical Society Lecture Note Series, Vol. 252, Cambridge University Press, 1998, pp. 108–123.
[21] J. Dymara and T. Januszkiewicz, Cohomology of buildings and of their automorphism groups, Inventiones Mathematicae 150 (2002), 579–627. · Zbl 1140.20308 · doi:10.1007/s00222-002-0242-y
[22] G. Harder, Über die Galoiskohomologie halbeinfacher algebraischer Gruppen. III, Journal für die Reine und Angewandte Mathematik 274/275 (1975), 125–138. · Zbl 0317.14025
[23] B. Kleiner, The local structure of length spaces with curvature bounded above, Mathematische Zeitschrift 231 (1999), 409–456. · Zbl 0940.53024 · doi:10.1007/PL00004738
[24] A. I. Mal’cev, On isomorphic matrix representations of infinite groups, Rec. Math. (Mat. Sbornik) 8(50) (1940), 405–422. · JFM 66.0088.03
[25] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 17, Springer-Verlag, Berlin, 1991. · Zbl 0732.22008
[26] O. Mathieu, Construction d’un groupe de Kac-Moody et applications, Compositio Mathematica 69 (1989), 37–60 (French). · Zbl 0678.17012
[27] I. Mineyev, N. Monod and Y. Shalom, Ideal bicombings for hyperbolic groups and applications, Topology 43 (2004), 1319–1344. · Zbl 1137.20033 · doi:10.1016/j.top.2004.01.008
[28] N. Monod, Superrigidity for irreducible lattices and geometric splitting, Journal of the American Mathematical Society 19 (2006), 781–814. · Zbl 1105.22006 · doi:10.1090/S0894-0347-06-00525-X
[29] G. Prasad, Strong approximation for semi-simple groups over function fields, Annals of Mathematics. Second Series 105 (1977), 553–572. · Zbl 0348.22006 · doi:10.2307/1970924
[30] G. Prasad, Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits, Bulletin de la Société Mathématique de France 110 (1982), 197–202. · Zbl 0492.20029
[31] M. S. Raghunathan, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York, 1972. · Zbl 0254.22005
[32] B. Rémy, Construction de réseaux en théorie de Kac-Moody, Comptes Rendus Mathématique. Académie des Sciences. Paris 329 (1999), 475–478. · Zbl 0933.22029 · doi:10.1016/S0764-4442(00)80044-0
[33] B. Rémy, Groupes de Kac-Moody déployés et presque déployés, Astérisque 277 (2002) (French).
[34] J. Tits, Algebraic and abstract simple groups, Annals of Mathematics. Second Series 80 (1964), 313–329. · Zbl 0131.26501 · doi:10.2307/1970394
[35] J. Tits, Buildings of Spherical Type and Finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin, 1974. · Zbl 0295.20047
[36] J. Tits, Groups and group functors attached to Kac-Moody data, (Arbeitstag. Bonn 1984, Proc. Meet. Max-Planck-Inst. Math., Bonn 1984), Lecture Notes in Mathematics, Vol. 1111, Springer-Verlag, Berlin, 1985, pp. 193–223.
[37] J. Tits, Uniqueness and presentation of Kac-Moody groups over fields, Journal of Algebra 105 (1987), 542–573. · Zbl 0626.22013 · doi:10.1016/0021-8693(87)90214-6
[38] J. S. Wilson, Groups with every proper quotient finite, Proceedings of the Cambridge Philosophical Society 69 (1971), 373–391. · Zbl 0216.08803 · doi:10.1017/S0305004100046818
[39] K. Wortman, Quasi-isometric rigidity of higher rank S-arithmetic lattices, Geometry and Topology 11 (2007), 995–1048. · Zbl 1171.22008 · doi:10.2140/gt.2007.11.995
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.