×

Finite difference method for two-dimensional nonlinear time-fractional subdiffusion equation. (English) Zbl 1428.65010

Summary: In this article, we propose an implicit-explicit scheme combining with the fast solver in space to solve two-dimensional nonlinear time-fractional subdiffusion equation. The applications of implicit-explicit scheme and fast solver will smartly enhance the computational efficiency. Due to the non-smoothness (or low regularities) of solutions to fractional differential equations, correction terms are introduced in the proposed scheme to improve the accuracy of error. The stability and convergence of the present scheme are also investigated. Numerical examples are carried out to demonstrate the efficiency and applicability of the derived scheme for both linear and nonlinear fractional subdiffusion equations with non-smooth solutions.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
15A18 Eigenvalues, singular values, and eigenvectors
65F15 Numerical computation of eigenvalues and eigenvectors of matrices

Software:

ma2dfc
Full Text: DOI

References:

[1] D.A. Benson, S.W. Wheatcraft and M.M. Meerschaert, Application of a fractional advection-dispersion equation. Water Resour. Res. 36 (2000), 1403-1412.; Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M., pplication of a fractional advection-dispersion equation, Water Resour. Res., 36, 1403-1412 (2000)
[2] J.P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195 (1990), 127-293.; Bouchaud, J. P.; Georges, A., nomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep., 195, 127-293 (1990)
[3] B.L. Buzbee, G.H. Golub and C.W. Nielson, On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7 (1970), 627-656.; Buzbee, B. L.; Golub, G. H.; Nielson, C. W., On direct methods for solving Poisson’s equations, SIAM J. Numer. Anal., 7, 627-656 (1970) · Zbl 0217.52902
[4] W.R. Cao, F.H. Zeng, Z.Q. Zhang and G.E. Karniadakis, Implicit-explicit difference schemes for nonlinear fractional differential equations with non-smooth solutions. SIAM J. Sci. Comput. 38 (2016), A3070-A3093.; Cao, W. R.; Zeng, F. H.; Zhang, Z. Q.; Karniadakis, G. E., Implicit-explicit difference schemes for nonlinear fractional differential equations with non-smooth solutions, SIAM J. Sci. Comput., 38, A3070-A3093 (2016) · Zbl 1355.65104
[5] A. Chen and C.P. Li, A novel compact ADI scheme for the time-fractional subdiffusion equation in two space dimensions. Int. J. Comput. Math. 93 (2016), 889-914.; Chen, A.; Li, C. P., A novel compact ADI scheme for the time-fractional subdiffusion equation in two space dimensions, Int. J. Comput. Math., 93, 889-914 (2016) · Zbl 1390.65062
[6] M. Cui, Compact alternating direction implicit method for two-dimensional time fractional diffusion equation. J. Comput. Phys. 231 (2012), 2621-2633.; Cui, M., Compact alternating direction implicit method for two-dimensional time fractional diffusion equation, J. Comput. Phys., 231, 2621-2633 (2012) · Zbl 1242.65158
[7] K. Diethelm, N.J. Ford and A.D. Freed, Detailed error analysis for a fractional Adams method. Numer. Algor. 36 (2004), 31-52.; Diethelm, K.; Ford, N. J.; Freed, A. D., Detailed error analysis for a fractional Adams method, Numer. Algor., 36, 31-52 (2004) · Zbl 1055.65098
[8] H.F. Ding and C.P. Li, High-order algorithms for Riesz derivative and their applications (III). Fract. Calc. Appl. Anal. 19, No 1 (2016), 19-55; ; .; Ding, H. F.; Li, C. P., High-order algorithms for Riesz derivative and their applications (III), Fract. Calc. Appl. Anal., 19, 1, 19-55 (2016) · Zbl 1332.65122 · doi:10.1515/fca-2016-0003
[9] H.F. Ding and C.P. Li, Fractional-compact numerical algorithms for Riesz spatial fractional reaction-dispersion equations. Fract. Calc. Appl. Anal. 20, No 3 (2017), 722-764; ; .; Ding, H. F.; Li, C. P., Fractional-compact numerical algorithms for Riesz spatial fractional reaction-dispersion equations, Fract. Calc. Appl. Anal., 20, 3, 722-764 (2017) · Zbl 1365.65194 · doi:10.1515/fca-2017-0038
[10] N.J. Ford and Y. Yan, An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data. Fract. Calc. Appl. Anal. 20, No 5 (2017), 1076-1105; ; .; Ford, N. J.; Yan, Y., n approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data, Fract. Calc. Appl. Anal., 20, 5, 1076-1105 (2017) · Zbl 1377.65102 · doi:10.1515/fca-2017-0058
[11] R. Garrappa, Trapezoidal methods for fractional differential equations: Theoretical and computational aspects. Math. Comput. Simulation110 (2015), 96-112.; Garrappa, R., Trapezoidal methods for fractional differential equations: Theoretical and computational aspects, Math. Comput. Simulation, 110, 96-112 (2015) · Zbl 1540.65194
[12] B.T. Jin, R. Lazarov, Y.K. Liuand Z. Zhou, The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281 (2015), 825-843.; Jin, B. T.; Lazarov, R.; Liuand, Y. K.; Zhou, Z., The Galerkin finite element method for a multi-term time-fractional diffusion equation, J. Comput. Phys., 281, 825-843 (2015) · Zbl 1352.65350
[13] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Application of Fractional Differential Equations. Elsevier, Amersterdam (2006).; Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Application of Fractional Differential Equations. (2006) · Zbl 1092.45003
[14] M. Klimek, M. Ciesielski and T. Blaszczyk, Exact and numerical solutions of the fractional Sturm-Liouville problem. Fract. Calc. Appl. Anal. 21, No 1 (2018), 45-71; ; .; Klimek, M.; Ciesielski, M.; Blaszczyk, T., Exact and numerical solutions of the fractional Sturm-Liouville problem, Fract. Calc. Appl. Anal., 21, 1, 45-71 (2018) · Zbl 1409.34011 · doi:10.1515/fca-2018-0004
[15] R. Koeller, Applications of fractional calculus to the theory of viscoelasticity. ASME J. Appl. Mech. 51 (1984), 299-307.; Koeller, R., pplications of fractional calculus to the theory of viscoelasticity, ASME J. Appl. Mech., 51, 299-307 (1984) · Zbl 0544.73052
[16] D. Kulkarni, D. Schmidt and S.-K. Tsui, Eigenvalues of tridiagonal pseudo-Toeplitz matrices. Linear Alg. Appl. 297 (1999), 63-80.; Kulkarni, D.; Schmidt, D.; Tsui, S.-K., Eigenvalues of tridiagonal pseudo-Toeplitz matrices, Linear Alg. Appl., 297, 63-80 (1999) · Zbl 0939.15002
[17] C.P. Li and A. Chen, Numerical methods for fractional partial differential equations. Int. J. Comput. Math. 95 (2018), 1048-1099.; Li, C. P.; Chen, A., Numerical methods for fractional partial differential equations, Int. J. Comput. Math., 95, 1048-1099 (2018) · Zbl 1513.65291
[18] C.P. Li, Q. Yi and A. Chen, Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316 (2016), 614-631.; Li, C. P.; Yi, Q.; Chen, A., Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys., 316, 614-631 (2016) · Zbl 1349.65246
[19] C.P. Li and F.H. Zeng, The finite difference methods for fractional ordinary differential equations. Numer. Funct. Anal. Optim. 34 (2013), 149-179.; Li, C. P.; Zeng, F. H., The finite difference methods for fractional ordinary differential equations, Numer. Funct. Anal. Optim., 34, 149-179 (2013) · Zbl 1267.65094
[20] C.P. Li and F.H. Zeng, Numerical Methods for Fractional Calculus. Chapman and Hall/CRC Press, Boca Raton, USA (2015).; Li, C. P.; Zeng, F. H., Numerical Methods for Fractional Calculus. (2015) · Zbl 1326.65033
[21] C.P. Li, F.H. Zeng and F.W. Liu, Spectral approximations to the fractional integral and derivative. Fract. Calc. Appl. Anal. 15, No 3 (2012), 383-406; ; .; Li, C. P.; Zeng, F. H.; Liu, F. W., Spectral approximations to the fractional integral and derivative, Fract. Calc. Appl. Anal., 15, 3, 383-406 (2012) · Zbl 1276.26016 · doi:10.2478/s13540-012-0028-x
[22] M. Li and C.M. Huang, Galerkin finite element method for nonlinear fractional Schrodinger equations. Numer. Algorithms74 (2017), 499-525.; Li, M.; Huang, C. M., Galerkin finite element method for nonlinear fractional Schrodinger equations, Numer. Algorithms, 74, 499-525 (2017) · Zbl 1359.65208
[23] Z.Q. Li, Y.B. Yan and N.J. Ford, Error estimates of a high order numerical method for solving linear fractional differential equations. Appl. Numer. Math. 114 (2017), 201-220.; Li, Z. Q.; Yan, Y. B.; Ford, N. J., Error estimates of a high order numerical method for solving linear fractional differential equations, Appl. Numer. Math., 114, 201-220 (2017) · Zbl 1357.65089
[24] C. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 17 (1986), 704-719.; Lubich, C., Discretized fractional calculus, SIAM J. Math. Anal., 17, 704-719 (1986) · Zbl 0624.65015
[25] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1-77.; Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032
[26] P. Perdikaris and G.E. Karniadakis, Fractional-order viscoelasticity in one-dimensional blood flow models. Ann. Biomed. Eng. 42 (2014), 1012-1023.; Perdikaris, P.; Karniadakis, G. E., Fractional-order viscoelasticity in one-dimensional blood flow models, Ann. Biomed. Eng., 42, 1012-1023 (2014)
[27] I. Podlubny, Fractional Differential Equations. Academic Press, New York (1999).; Podlubny, I., Fractional Differential Equations. (1999) · Zbl 0918.34010
[28] I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen and B.M.V. Jara, Matrix approach to discrete fractional calculus II: Partial fractional differential equations. J. Comput. Phys. 228 (2009), 3137-3153.; Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y.; Jara, B. M.V., Matrix approach to discrete fractional calculus II: Partial fractional differential equations, J. Comput. Phys., 228, 3137-3153 (2009) · Zbl 1160.65308
[29] Y.A. Rossikhin and M.V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63 (2010), Art. # 010801.; Rossikhin, Y. A.; Shitikova, M. V., pplication of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, Appl. Mech. Rev., 63, 010801 (2010) · Zbl 1365.74132
[30] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993).; Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives Theory and Applications. (1993) · Zbl 0818.26003
[31] H. Sheng, Y. Chen and T. Qiu, Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications. Springer-Verlag, London (2011).; Sheng, H.; Chen, Y.; Qiu, T., Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications. (2011) · Zbl 1245.94004
[32] C. Tadjeran and M.M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220 (2007), 813-823.; Tadjeran, C.; Meerschaert, M. M., A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys., 220, 813-823 (2007) · Zbl 1113.65124
[33] H. Wang and N. Du, Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258 (2014), 305-318.; Wang, H.; Du, N., Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations, J. Comput. Phys., 258, 305-318 (2014) · Zbl 1349.65342
[34] Z. Yang, Z. Yuan, Y. Nie, J. Wang, X. Zhu and F. Liu, Finite element method for nonlinear Riesz space fractional diffusion equations on irregular domains. J. Comput. Phys. 330 (2017), 863-883.; Yang, Z.; Yuan, Z.; Nie, Y.; Wang, J.; Zhu, X.; Liu, F., Finite element method for nonlinear Riesz space fractional diffusion equations on irregular domains, J. Comput. Phys., 330, 863-883 (2017) · Zbl 1378.35330
[35] S.B. Yuste and J. Quintana-Murillo, A finite difference method with non-uniform timesteps for fractional diffusion equations. Comput. Phys. Commun. 183 (2012), 2594-2600.; Yuste, S. B.; Quintana-Murillo, J., A finite difference method with non-uniform timesteps for fractional diffusion equations, Comput. Phys. Commun., 183, 2594-2600 (2012) · Zbl 1268.65120
[36] F.H. Zeng, C.P. Li, F. Liu and I. Turner, Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37 (2015), A55-A78.; Zeng, F. H.; Li, C. P.; Liu, F.; Turner, I., Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM J. Sci. Comput., 37, A55-A78 (2015) · Zbl 1334.65162
[37] F.H. Zeng, Z.Q. Zhang and G.E. Karniadakis, Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput. Phys. 307 (2016), 15-33.; Zeng, F. H.; Zhang, Z. Q.; Karniadakis, G. E., Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations, J. Comput. Phys., 307, 15-33 (2016) · Zbl 1352.65278
[38] F.H. Zeng, Z.Q. Zhang and G.E. Karniadakis, Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions. Comput. Methods Appl. Mech. Engrg. 327 (2017), 478-502.; Zeng, F. H.; Zhang, Z. Q.; Karniadakis, G. E., Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions, Comput. Methods Appl. Mech. Engrg., 327, 478-502 (2017) · Zbl 1439.65081
[39] Y.N. Zhang, Z.Z. Sun and H.L. Liao, Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265 (2014), 195-210.; Zhang, Y. N.; Sun, Z. Z.; Liao, H. L., Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys., 265, 195-210 (2014) · Zbl 1349.65359
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.