×

On the model of random walk with multiple memory structure. (English) Zbl 1528.60109

Summary: A model of one-dimensional random walk based on the memory flow phenomenology is constructed. In this model, the jumps of the random walk process have a convolution structure formed on the basis of a finite sequence of memory functions and a stationary, generally speaking, non-Gaussian sequence. A physical interpretation of memory functions and the stationary sequence is given. A limit theorem in the metric space \(D[0, 1]\) for the normalized walk process is obtained.

MSC:

60K50 Anomalous diffusion models (subdiffusion, superdiffusion, continuous-time random walks, etc.)
Full Text: DOI

References:

[1] Olemskoi, A. I.; Flat, A. Ya., Application of fractals in condensed-matter physics, Phys.-Usp., 36, 1087-1128 (1993)
[2] Nigmatullin, R. R., Fractional integral and its physical interpretation, Theoret. Math. Phys., 90, 3, 242-251 (1992) · Zbl 0795.26007
[3] Arkashov, N. S.; Seleznev, V. A., Formation of a relation of nonlocalities in the anomalous diffusion model, Theor. Math. Phys., 193, 1, 1508-1523 (2017) · Zbl 1387.82020
[4] Arkashov, N. S., On a method for the probability and statistical analysis of the density of low frequency turbulent plasma, Comput. Math. Math. Phys., 59, 3, 402-413 (2019) · Zbl 1421.62169
[5] Gheorghiu, S.; Coppens, M. O., Heterogeneity explains features of anomalous thermodynamics and statistics, Proc. Natl. Acad. Sci., 101, 45, 15852-15856 (2004)
[6] D’Ovidio, M.; Vitali, S.; Sposini, V.; Sliusarenko, O.; Paradisi, P.; Castellani, G.; Pagnini, G., Centre-of-mass like superposition of Ornstein-Uhlenbeck processes: A pathway to non-autonomous stochastic differential equations and to fractional diffusion, Fract. Calc. Appl. Anal., 21, 5, 1420-1435 (2018) · Zbl 1436.60041
[7] Kolmogorov, A. N., Curves in Hilbert space invariant with respect to a one-parameter group of motions, Dokl. Akad. Nauk SSSR, 26, 1, 6-9 (1940), (in Russian)
[8] Kolmogorov, A. N., Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum, C.R. (Dokl.) Acad. Sci. URSS (NS), 26, 115-118 (1940) · JFM 66.0552.03
[9] Mandelbrot, B.; Van Ness, J., Fractional Brownian motions, fractional noise and applications, SIAM Rev., 10, 422-437 (1968) · Zbl 0179.47801
[10] Samorodnitsky, G.; Taqqu, M., Stable Non-Gaussian Random Processes (1994), Chapman & Hall: Chapman & Hall New York · Zbl 0925.60027
[11] Davydov, Yu. A., The invariance principle for stationary processes, Theory Probab. Appl., 15, 3, 487-498 (1970) · Zbl 0219.60030
[12] Konstantopoulos, T.; Sakhanenko, A., Convergence and convergence rate to fractional Brownian motion for weighted random sums, Sib. Electron. Math. Rep., 1, 47-63 (2004) · Zbl 1079.60025
[13] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) · Zbl 0984.82032
[14] Díez Fernández, A.; Charchar, P.; Cherstvy, A. G.; Metzler, R.; Finnis, M. W., The diffusion of doxorubicin drug molecules in silica nanoslits is non-Gaussian, intermittent and anticorrelated, Phys. Chem. Chem. Phys., 22, 27955-27965 (2020)
[15] Feller, W., An Introduction To Probability Theory and Its Applications (1971), J. Wiley & Sons, v. II: J. Wiley & Sons, v. II New York · Zbl 0219.60003
[16] Ibragimov, I. A.; Linnik, Yu. V., Independent and Stationarily Connected Variables (1971), Wolters-Noordhoff Publishing Company: Wolters-Noordhoff Publishing Company Groningen, The Netherlands · Zbl 0154.42201
[17] Cannon, M. J.; Percival, D. B.; Caccia, D. C.; Raymond, G. M.; Bassingthwaighte, J. B., Evaluating scaled window variance methods for estimating the hurst coefficient of time series, Physica A, 241, 606-626 (1997)
[18] Arkashov, N. S.; Borisov, I. S., Gaussian approximation to the partial sum processes of moving averages, Sib. Math. J., 45, 6, 1000-1030 (2004) · Zbl 1094.62109
[19] Borovkov, A. A.; Mogulskii, A. A.; Sakhanenko, A. I., Limit theorems for random processes, (Probability Theory 7, Vol. 82 (1995), VINITI: VINITI Moscow) · Zbl 0951.60023
[20] Borovkov, A. A., Asymptotic Methods in Queueing Theory (1984), J. Wiley & Sons: J. Wiley & Sons Chichester etc. · Zbl 0544.60085
[21] Wang, W.; Cherstvy, A. G.; Liu, X.; Metzler, R., Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise, Phys. Rev. E, 102, 1, Article 012146 pp. (2020)
[22] Van Kampen, N. G., Stochastic Processes in Physics and Chemistry (2007), Elsevier Science & Technology: Elsevier Science & Technology Amsterdam etc. · Zbl 0511.60038
[23] Eliazar, I.; Klafter, J., Anomalous is ubiquitous, Ann. Physics, 326, 9, 2517-2531 (2011) · Zbl 1238.60086
[24] Chaves, A. S., A fractional diffusion equation to describe Levy flights, Phys. Lett. A, 239, 13-16 (1998) · Zbl 1026.82524
[25] Bouchaud, J. P.; Georges, A., Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195, 4-5, 127-293 (1990)
[26] Kutner, R.; Masoliver, J., The continuous time random walk, still trendy: fifty-year history, state of art and outlook, Eur. Phys. J. B, 90, 3, 90:50 (2017)
[27] Yu. Korolev, V., Probabilistic and Statistical Methods of Decomposition of Volatility of Chaotic Processes (2011), Moscow University Publishing House: Moscow University Publishing House Moscow · Zbl 1235.60002
[28] West, B. J.; Lindenberg, K., Fokker-Planck description of multi-degree-of-freedom systems with correlated fluctuations, Phys. Lett. A, 95, 1, 44-46 (1983)
[29] Compte, A.; Metzler, R., The generalized cattaneo equation for the description of anomalous transport processes, J. Phys. A: Math. Gen., 30, 21, 7277-7289 (1997) · Zbl 0941.82046
[30] Cherstvy, A. G.; Chechkin, A. V.; Metzler, R., Anomalous diffusion and ergodicity breaking in heterogeneous diffusion, New J. Phys., 15, 8, Article 083039 pp. (2013)
[31] Budaev, V. P.; Savin, S. P.; Zelenyi, L. M., Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: Towards a quantitative definition of plasma transport features, Phys.-Usp., 54, 875-918 (2011)
[32] Arkashov, N. S., The principle of invariance in the donsker form to the partial sum processes of finite order moving averages, Sib. Electron. Math. Rep., 16, 1276-1288 (2019) · Zbl 1448.60076
[33] Billingsley, P., Convergence of Probability Measures (1968), J. Wiley: J. Wiley New York · Zbl 0172.21201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.