×

The EWMA Heston model. (English) Zbl 1518.91264

Summary: This paper introduces the exponentially weighted moving average (EWMA) Heston model, a Markovian stochastic volatility model able to capture a wide range of empirical features related to volatility dynamics while being more tractable for simulations than rough volatility models based on fractional processes. After presenting the model and its principal characteristics, our analysis focuses on the use of its associated Euler-discretization scheme as a time-series generator for Monte Carlo simulations. Using this discretization scheme, and on the basis of S&P500 empirical time series, we show that the EWMA Heston model is overall consistent with market data, making it a credible alternative to other existing stochastic volatility models.

MSC:

91G15 Financial markets
91B70 Stochastic models in economics
60H30 Applications of stochastic analysis (to PDEs, etc.)
Full Text: DOI

References:

[1] Abi Jaber, E., Lifting the Heston model, Quant. Finance, 19, 12, 1995-2013 (2019) · Zbl 1441.91093
[2] Baillie, R. T.; Bollerslev, T.; Mikkelsen, H. O., Fractionally integrated generalized autoregressive conditional heteroskedasticity, J. Econom., 74, 1, 3-30 (1996) · Zbl 0865.62085
[3] Belkhouja, M.; Boutahary, M., Modeling volatility with time-varying FIGARCH models, Econ. Model., 28, 3, 1106-1116 (2011)
[4] Bennedsen, M., Lunde, A. and Pakkanen, M.S., Decoupling the short-and long-term behavior of stochastic volatility. arXiv preprint arXiv:1610.00332, 2016.
[5] Blanc, P.; Donier, J.; Bouchaud, J. P., Quadratic hawkes processes for financial prices, Quant. Finance, 17, 2, 171-188 (2017) · Zbl 1402.91905
[6] Bochud, T.; Challet, D., Optimal approximations of power laws with exponentials: Application to volatility models with long memory, Quant. Finance, 7, 6, 585-589 (2007) · Zbl 1151.91484
[7] Borland, L. and Bouchaud, J.P., On a multi-timescale statistical feedback model for volatility fluctuations. arXiv preprint physics/0507073, 2005.
[8] Bruder, B. and Gaussel, N., Risk-return analysis of dynamic investment strategies. Available at SSRN 2465623, 2011.
[9] Cont, R., Empirical properties of asset returns: Stylized facts and statistical issues, Quant. Finance, 1, 2, 223 (2001) · Zbl 1408.62174
[10] Cont, R. and Das, P., Rough volatility: Fact or artefact? arXiv preprint arXiv:2203.13820.
[11] Dandapani, A., Jusselin, P. and Rosenbaum, M., From quadratic hawkes processes to super-Heston rough volatility models with Zumbach effect. arXiv preprint arXiv:1907.06151, 2019.
[12] De Bondt, W. F.; Thaler, R. H., Further evidence on investor overreaction and stock market seasonality, J. Finan., 42, 3, 557-581 (1987)
[13] Ding, Z.; Granger, C. W.; Engle, R. F., A long memory property of stock market returns and a new model, J. Empir. Finan., 1, 1, 83-106 (1993)
[14] Dissanaike, G., Do stock market investors overreact, J. Bus. Financ. Account., 24, 1, 27-50 (1997)
[15] El Euch, O.; Rosenbaum, M., Perfect hedging in rough Heston models, Ann. Appl. Probab., 28, 6, 3813-3856 (2018) · Zbl 1418.91467
[16] El Euch, O.; Rosenbaum, M., The characteristic function of rough Heston models, Math. Finan., 29, 1, 3-38 (2019) · Zbl 1411.91553
[17] El Euch, O., Quantitative finance under rough volatility. PhD Thesis, Sorbonne université, 2018.
[18] Engle, R. F., Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econom.: J. Econom. Soc., 50, 987-1007 (1982) · Zbl 0491.62099
[19] Gatheral, J.; Jaisson, T.; Rosenbaum, M., Volatility is rough, Quant. Finance, 18, 6, 933-949 (2018) · Zbl 1400.91590
[20] Gatheral, J., Jusselin, P. and Rosenbaum, M., The quadratic rough Heston model and the joint S&P500/VIX smile calibration problem. arXiv preprint arXiv:2001.01789, 2020.
[21] Guyon, J., Path-dependent volatility. Risk Magazine, 2014.
[22] Harvey, A. C., Forecasting, Structural Time Series Models and the Kalman Filter (1990), Institute of Mathematical Statistics · Zbl 0725.62083
[23] Heston, S. L., A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Finan. Stud., 6, 2, 327-343 (1993) · Zbl 1384.35131
[24] Jusselin, P., Lezmi, E., Malongo, H. and Masselin, C., An in-depth journey through trend-following strategies. Available at SSRN 3042173, 2017.
[25] Lanne, M.; Saikkonen, P., Non-linear GARCH models for highly persistent volatility, Econom. J., 8, 2, 251-276 (2005) · Zbl 1095.91046
[26] Lord, R.; Koekkoek, R.; Dijk, D. V., A comparison of biased simulation schemes for stochastic volatility models, Quant. Finance, 10, 2, 177-194 (2010) · Zbl 1198.91240
[27] Mandelbrot, B. B.; Hudson, R. L., The (mis)behavior of Markets: A Fractal View of Risk, Ruin, and Reward (2005), Profile Books
[28] Maruyama, G., Continuous Markov processes and stochastic equations, Rend. Circ. Mat. Palermo, 4, 48-90 (1955) · Zbl 0053.40901
[29] Nelson, D. B., Conditional heteroskedasticity in asset returns: A new approach, Econom. J. Econom. Soc., 59, 347-370 (1991) · Zbl 0722.62069
[30] Rachev, S. T. (Ed.), Handbook of Heavy Tailed Distributions in Finance: Handbooks in Finance, Book 1, 2003 (Elsevier).
[31] Rogers, L.C.G., Things we think we know. Preprint Available at https://www.skokholm.co.uk/lcgr/downloadable-papers, 2019.
[32] Zumbach, G.; Lynch, P., Heterogeneous volatility cascade in financial markets, Phys. A Stat. Mech. Appl., 298, 3-4, 521-529 (2001) · Zbl 0971.91022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.